Skip to content

Releases: googleapis/python-aiplatform

v1.15.1

18 Jul 20:26
18f5cdd
Compare
Choose a tag to compare

1.15.1 (2022-07-18)

Features

  • add get_associated_experiment method to pipeline_jobs (#1476) (e9f2c3c)
  • Add sample for create artifact and execution using the Metadata SDK. (#1462) (1fc7dd9)
  • Add support for start_execution in MLMD SDK. (#1465) (298958f)
  • Add support for Vertex Tables Q2 regions (#1498) (1b16f90)
  • Added the PipelineJob.from_pipeline_func method (#1415) (6ef05de)

Bug Fixes

  • deps: require google-api-core>=1.32.0,>=2.8.0 (#1512) (6d09dee)
  • Unbreak aiplatform.Experiment.create (#1509) (558c141)

Miscellaneous Chores

v1.15.0

30 Jun 17:06
b24b390
Compare
Choose a tag to compare

1.15.0 (2022-06-29)

Features

  • add default_skew_threshold to TrainingPredictionSkewDetectionConfig in aiplatform v1beta1, v1 model_monitoring.proto (#1411) (7a8e3be)
  • add model_monitoring_config to BatchPredictionJob in aiplatform v1beta1 batch_prediction_job.proto (#1450) (d35df58)
  • add model_version_id to BatchPredictionJob in aiplatform v1 batch_prediction_job.proto (#1453) (9ef057a)
  • add model_version_id to UploadModelResponse in aiplatform v1 model_service.proto (#1442) (1c198f1)
  • Add PrivateEndpoint class and HTTP methods (#1033) (425a32f)
  • add support for accepting an Artifact Registry URL in pipeline_job (#1405) (e138cfd)
  • add support for failure_policy in PipelineJob (#1452) (d0968ea)
  • Improved metadata artifact and execution creation using python / SDK (#1430) (6c4374f)
  • support dataset update (#1416) (e3eb82f)
  • Support for Model Versioning (#1438) (d890685)
  • Vertex AI Experiments GA (#1410) (24d1bb6)

Bug Fixes

  • Fixed docstrings for wildcards and matching engine type (#1220) (d778dee)
  • Removed dirs_exist_ok parameter as it's not backwards compatible (#1170) (50d4129)

v1.14.0

09 Jun 16:12
b91db66
Compare
Choose a tag to compare

1.14.0 (2022-06-08)

Features

  • add a way to easily clone a PipelineJob (#1239) (efaf6ed)
  • add display_name and metadata to ModelEvaluation in aiplatform model_evaluation.proto (b6bf6dc)
  • add Examples to Explanation related messages in aiplatform v1beta1 explanation.proto (b6bf6dc)
  • Add hierarchy and window configs to Vertex Forecasting training job (#1255) (8560fa8)
  • add holiday regions for vertex forecasting (#1253) (0036ab0)
  • add IAM policy to aiplatform_v1beta1.yaml (b6bf6dc)
  • add latent_space_source to ExplanationMetadata in aiplatform v1 explanation_metadata.proto (b6bf6dc)
  • add latent_space_source to ExplanationMetadata in aiplatform v1beta1 explanation_metadata.proto (b6bf6dc)
  • add preset configuration for example-based explanations in aiplatform v1beta1 explanation.proto (b6bf6dc)
  • add scaling to OnlineServingConfig in aiplatform v1 featurestore.proto (b6bf6dc)
  • add seq2seq forecasting training job (#1196) (643d335)
  • add successful_forecast_point_count to CompletionStats in completion_stats.proto (b6bf6dc)
  • add template_metadata to PipelineJob in aiplatform v1 pipeline_job.proto (b6bf6dc)
  • Add Vertex Forecasting E2E test. (#1248) (e82c179)
  • Added forecasting snippets and fixed bugs with existing snippets (#1210) (4e4bff5)

Bug Fixes

  • change endpoint update method to return resource (#1409) (44e279b)
  • Changed system test to use list_models() correctly (#1397) (a3da19a)
  • Pinned protobuf to prevent issues with pb files. (#1398) (7a54637)

Documentation

v1.13.1

27 May 00:17
dc3be45
Compare
Choose a tag to compare

1.13.1 (2022-05-26)

Features

Bug Fixes

Documentation

  • update aiplatform SDK arrangement for Sphinx (#1163) (e9510ea)

Miscellaneous Chores

v1.13.0

10 May 16:10
7c70484
Compare
Choose a tag to compare

1.13.0 (2022-05-09)

Features

  • add ConvexAutomatedStoppingSpec to StudySpec in aiplatform v1 study.proto (847ad78)
  • add ConvexAutomatedStoppingSpec to StudySpec in aiplatform v1beta1 study.proto (847ad78)
  • add JOB_STATE_UPDATING to JobState in aiplatform v1 job_state.proto (847ad78)
  • add JOB_STATE_UPDATING to JobState in aiplatform v1beta1 job_state.proto (847ad78)
  • add LatestMonitoringPipelineMetadata to ModelDeploymentMonitoringJob in aiplatform v1beta1 model_deployment_monitoring_job.proto (847ad78)
  • add ListModelVersion, DeleteModelVersion, and MergeVersionAliases rpcs to aiplatform v1beta1 model_service.proto (847ad78)
  • add MfsMount in aiplatform v1 machine_resources.proto (847ad78)
  • add MfsMount in aiplatform v1beta1 machine_resources.proto (847ad78)
  • add model_id and parent_model to TrainingPipeline in aiplatform v1beta1 training_pipeline.proto (847ad78)
  • add model_version_id to DeployedModel in aiplatform v1beta1 endpoint.proto (847ad78)
  • add model_version_id to PredictResponse in aiplatform v1beta1 prediction_service.proto (847ad78)
  • add model_version_id to UploadModelRequest and UploadModelResponse in aiplatform v1beta1 model_service.proto (847ad78)
  • add nfs_mounts to WorkPoolSpec in aiplatform v1 custom_job.proto (847ad78)
  • add nfs_mounts to WorkPoolSpec in aiplatform v1beta1 custom_job.proto (847ad78)
  • add Pandas DataFrame support to TabularDataset (#1185) (4fe4558)
  • add PredictRequestResponseLoggingConfig to aiplatform v1beta1 endpoint.proto (847ad78)
  • add reserved_ip_ranges to CustomJobSpec in aiplatform v1 custom_job.proto (#1165) (847ad78)
  • add reserved_ip_ranges to CustomJobSpec in aiplatform v1beta1 custom_job.proto (847ad78)
  • add template_metadata to PipelineJob in aiplatform v1beta1 pipeline_job.proto (#1186) (99aca4a)
  • add version_id to Model in aiplatform v1beta1 model.proto (847ad78)
  • allow creating featurestore without online node (#1180) (3224ae3)
  • Allow users to specify timestamp split for vertex forecasting (#1187) (ee49e00)
  • Make matching engine API public (#1192) (469db6b)
  • rename Similarity to Examples, and similarity to examples in ExplanationParameters in aiplatform v1beta1 explanation.proto (847ad78)

Documentation

  • fix type in docstring for map fields (847ad78)

v1.12.1

20 Apr 23:40
9e320f5
Compare
Choose a tag to compare

1.12.1 (2022-04-20)

Features

Bug Fixes

  • change default for create_request_timeout arg to None (#1175) (47791f7)

Documentation

Miscellaneous Chores

v1.12.0

07 Apr 18:29
0809ed4
Compare
Choose a tag to compare

1.12.0 (2022-04-07)

Features

  • add categorical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto (38f3711)
  • add categorical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
  • add disable_monitoring to Feature in aiplatform v1 feature.proto (38f3711)
  • add disable_monitoring to Feature in aiplatform v1beta1 feature.proto (38f3711)
  • Add done method for pipeline, training, and batch prediction jobs (#1062) (f3338fc)
  • add import_features_analysis to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto (38f3711)
  • add import_features_analysis to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
  • add ImportModelEvaluation in aiplatform v1 model_service.proto (#1105) (ef5930c)
  • add monitoring_config to EntityType in aiplatform v1 entity_type.proto (#1077) (38f3711)
  • add monitoring_stats_anomalies to Feature in aiplatform v1 feature.proto (38f3711)
  • add monitoring_stats_anomalies to Feature in aiplatform v1beta1 feature.proto (38f3711)
  • add numerical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto (38f3711)
  • add numerical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
  • add objective to MonitoringStatsSpec in aiplatform v1 featurestore_service.proto (38f3711)
  • add objective to MonitoringStatsSpec in aiplatform v1beta1 featurestore_service.proto (38f3711)
  • add PredictRequestResponseLoggingConfig to Endpoint in aiplatform v1 endpoint.proto (#1072) (be0ccc4)
  • add staleness_days to SnapshotAnalysis in aiplatform v1 featurestore_monitoring.proto (38f3711)
  • add staleness_days to SnapshotAnalysis in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
  • Add support for Vertex Tables Q1 regions (#1065) (6383d4f)
  • add timeout arg across SDK (#1099) (184f7f3)
  • Add timeout arguments to Endpoint.predict and Endpoint.explain (#1094) (cc59e60)
  • Made display_name parameter optional for most calls (#882) (400b760)
  • sdk: enable loading both JSON and YAML pipelines IR (#1089) (f2e70b1)
  • v1beta1: add service_account to BatchPredictionJob in batch_prediction_job.proto (#1084) (b7a5177)

Bug Fixes

  • add resource manager utils to get project ID from project number (#1068) (f10a1d4)
  • add self.wait() in operations after optional_sync supported resource creation (#1083) (79aeec1)
  • Don't throw exception when getting representation of unrun GCA objects (#1071) (c9ba060)
  • Fix import error string showing wrong pip install path (#1076) (74ffa19)
  • Fixed getting project ID when running on Vertex AI; Fixes #852 (#943) (876cb33)
  • Give aiplatform logging its own log namespace, let the user configure their own root logger (#1081) (fb78243)
  • Honoring the model's supported_deployment_resources_types (#865) (db34b85)
  • missing reference to logged_web_access_uris (#1056) (198a1b5)
  • system tests failure from test_upload_and_deploy_xgboost_model (#1149) (c8422a9)

Documentation

  • fix CustomContainerTrainingJob example in docstring (#1101) (d2fb9db)
  • improve bigquery_destination_prefix docstring (#1098) (a46df64)
  • Include time dependency in documentation for weight, time, and target columns. (#1102) (52273c2)
  • samples: read, import, batch_serve, batch_create features (#1046) (80dd40d)
  • Update AutoML Video docstring (#987) (6002d5d)

v1.11.0

03 Mar 22:26
d8a5e0b
Compare
Choose a tag to compare

1.11.0 (2022-03-03)

Features

  • add additional_experiement flag in the tables and forecasting training job (#979) (5fe59a4)
  • add TPU_V2 & TPU_V3 values to AcceleratorType in aiplatform v1/v1beta1 accelerator_type.proto (#1010) (09c2e8a)
  • Added scheduling to CustomTrainingJob, CustomPythonPackageTrainingJob, CustomContainerTrainingJob (#970) (89078e0)

Bug Fixes

  • deps: allow google-cloud-storage < 3.0.0dev (#1008) (1c34154)
  • deps: require google-api-core>=1.31.5, >=2.3.2 (#1050) (dfbd68a)
  • deps: require proto-plus>=1.15.0 (dfbd68a)
  • enforce bq SchemaField field_type and mode using feature value_type (#1019) (095bea2)
  • Fix create_lit_model_from_endpoint not accepting models that don't return a dictionary. (#1020) (b9a057d)
  • loosen assertions for system test featurestore (#1040) (2ba404f)
  • remove empty scripts kwarg in setup.py (#1014) (ef3fcc8)
  • show logs when TFX pipelines are submitted (#976) (c10923b)
  • update system test_model_upload to use BUILD_SPECIFIC_GCP_PROJECT (#1043) (e7d2719)

Documentation

  • samples: add samples to create/delete featurestore (#980) (5ee6354)
  • samples: added create feature and create entity type samples and tests (#984) (d221e6b)

v1.10.0

08 Feb 15:13
9ec90a7
Compare
Choose a tag to compare

1.10.0 (2022-02-07)

Features

  • _TrainingScriptPythonPackager to support folders (#812) (3aec6a7)
  • add dedicated_resources to DeployedIndex in aiplatform v1beta1 index_endpoint.proto feat: add Scaling to OnlineServingConfig in aiplatform v1beta1 featurestore.proto chore: sort imports (#991) (7a7f0d4)
  • add dedicated_resources to DeployedIndex message in aiplatform v1 index_endpoint.proto chore: sort imports (#990) (a814923)
  • Add XAI SDK integration to TensorFlow models with LIT integration (#917) (ea2b5cf)
  • Added aiplatform.Model.update method (#952) (44e208a)
  • Enable europe-west6 and northamerica-northeast2 regions (0f6b670)
  • enable feature store batch serve to BigQuery and GCS for csv and tfrecord (#919) (c840728)
  • enable feature store batch serve to Pandas DataFrame; fix: read instances uri for batch serve (#983) (e0fec36)
  • enable feature store online serving (#918) (b8f5f82)
  • enable ingest from pd.DataFrame (#977) (9289f2d)
  • Open LIT with a deployed model (#963) (ea16849)

Bug Fixes

Documentation

  • samples: replace deprecated fields in create_training_pipeline_tabular_forecasting_sample.py (#981) (9ebc972)

v1.9.0

06 Jan 17:42
b72067b
Compare
Choose a tag to compare

Features

  • add create in Featurestore, EntityType, Feature; add create_entity_type in Featurestore; add create_feature, batch_create_features in EntityType; add ingest_from_* for bq and gcs in EntityType; add and update delete with force delete nested resources (#872) (ba11c3d)
  • Add LIT methods for Pandas DataFrame and TensorFlow saved model. (#874) (03cf301)
  • Add support to create TensorboardExperiment (#909) (96ce738)
  • Add support to create TensorboardRun (#912) (8df74a2)

Bug Fixes

  • Fix timestamp proto util to default to timestamp at call time. (#933) (d72a254)
  • Improve handling of undeploying model without redistributing remaining traffic (#898) (8a8a4fa)
  • issues/192254729 (#914) (3ec620c)
  • issues/192254729 (#915) (0f22ff6)
  • use open_in_new_tab in the render method. (#926) (04618e0)