Releases: googleapis/python-aiplatform
Releases · googleapis/python-aiplatform
v1.15.1
1.15.1 (2022-07-18)
Features
- add get_associated_experiment method to pipeline_jobs (#1476) (e9f2c3c)
- Add sample for create artifact and execution using the Metadata SDK. (#1462) (1fc7dd9)
- Add support for start_execution in MLMD SDK. (#1465) (298958f)
- Add support for Vertex Tables Q2 regions (#1498) (1b16f90)
- Added the PipelineJob.from_pipeline_func method (#1415) (6ef05de)
Bug Fixes
- deps: require google-api-core>=1.32.0,>=2.8.0 (#1512) (6d09dee)
- Unbreak aiplatform.Experiment.create (#1509) (558c141)
Miscellaneous Chores
v1.15.0
1.15.0 (2022-06-29)
Features
- add default_skew_threshold to TrainingPredictionSkewDetectionConfig in aiplatform v1beta1, v1 model_monitoring.proto (#1411) (7a8e3be)
- add model_monitoring_config to BatchPredictionJob in aiplatform v1beta1 batch_prediction_job.proto (#1450) (d35df58)
- add model_version_id to BatchPredictionJob in aiplatform v1 batch_prediction_job.proto (#1453) (9ef057a)
- add model_version_id to UploadModelResponse in aiplatform v1 model_service.proto (#1442) (1c198f1)
- Add PrivateEndpoint class and HTTP methods (#1033) (425a32f)
- add support for accepting an Artifact Registry URL in pipeline_job (#1405) (e138cfd)
- add support for failure_policy in PipelineJob (#1452) (d0968ea)
- Improved metadata artifact and execution creation using python / SDK (#1430) (6c4374f)
- support dataset update (#1416) (e3eb82f)
- Support for Model Versioning (#1438) (d890685)
- Vertex AI Experiments GA (#1410) (24d1bb6)
Bug Fixes
v1.14.0
1.14.0 (2022-06-08)
Features
- add a way to easily clone a PipelineJob (#1239) (efaf6ed)
- add display_name and metadata to ModelEvaluation in aiplatform model_evaluation.proto (b6bf6dc)
- add Examples to Explanation related messages in aiplatform v1beta1 explanation.proto (b6bf6dc)
- Add hierarchy and window configs to Vertex Forecasting training job (#1255) (8560fa8)
- add holiday regions for vertex forecasting (#1253) (0036ab0)
- add IAM policy to aiplatform_v1beta1.yaml (b6bf6dc)
- add latent_space_source to ExplanationMetadata in aiplatform v1 explanation_metadata.proto (b6bf6dc)
- add latent_space_source to ExplanationMetadata in aiplatform v1beta1 explanation_metadata.proto (b6bf6dc)
- add preset configuration for example-based explanations in aiplatform v1beta1 explanation.proto (b6bf6dc)
- add scaling to OnlineServingConfig in aiplatform v1 featurestore.proto (b6bf6dc)
- add seq2seq forecasting training job (#1196) (643d335)
- add successful_forecast_point_count to CompletionStats in completion_stats.proto (b6bf6dc)
- add template_metadata to PipelineJob in aiplatform v1 pipeline_job.proto (b6bf6dc)
- Add Vertex Forecasting E2E test. (#1248) (e82c179)
- Added forecasting snippets and fixed bugs with existing snippets (#1210) (4e4bff5)
Bug Fixes
- change endpoint update method to return resource (#1409) (44e279b)
- Changed system test to use list_models() correctly (#1397) (a3da19a)
- Pinned protobuf to prevent issues with pb files. (#1398) (7a54637)
Documentation
v1.13.1
1.13.1 (2022-05-26)
Features
- add batch_size kwarg for batch prediction jobs (#1194) (50bdb01)
- add update endpoint (#1162) (0ecfe1e)
- support autoscaling metrics when deploying models (#1197) (095717c)
Bug Fixes
- check in service proto file (#1174) (5fdf151)
- regenerate pb2 files using grpcio-tools (#1394) (406c868)
Documentation
Miscellaneous Chores
v1.13.0
1.13.0 (2022-05-09)
Features
- add ConvexAutomatedStoppingSpec to StudySpec in aiplatform v1 study.proto (847ad78)
- add ConvexAutomatedStoppingSpec to StudySpec in aiplatform v1beta1 study.proto (847ad78)
- add JOB_STATE_UPDATING to JobState in aiplatform v1 job_state.proto (847ad78)
- add JOB_STATE_UPDATING to JobState in aiplatform v1beta1 job_state.proto (847ad78)
- add LatestMonitoringPipelineMetadata to ModelDeploymentMonitoringJob in aiplatform v1beta1 model_deployment_monitoring_job.proto (847ad78)
- add ListModelVersion, DeleteModelVersion, and MergeVersionAliases rpcs to aiplatform v1beta1 model_service.proto (847ad78)
- add MfsMount in aiplatform v1 machine_resources.proto (847ad78)
- add MfsMount in aiplatform v1beta1 machine_resources.proto (847ad78)
- add model_id and parent_model to TrainingPipeline in aiplatform v1beta1 training_pipeline.proto (847ad78)
- add model_version_id to DeployedModel in aiplatform v1beta1 endpoint.proto (847ad78)
- add model_version_id to PredictResponse in aiplatform v1beta1 prediction_service.proto (847ad78)
- add model_version_id to UploadModelRequest and UploadModelResponse in aiplatform v1beta1 model_service.proto (847ad78)
- add nfs_mounts to WorkPoolSpec in aiplatform v1 custom_job.proto (847ad78)
- add nfs_mounts to WorkPoolSpec in aiplatform v1beta1 custom_job.proto (847ad78)
- add Pandas DataFrame support to TabularDataset (#1185) (4fe4558)
- add PredictRequestResponseLoggingConfig to aiplatform v1beta1 endpoint.proto (847ad78)
- add reserved_ip_ranges to CustomJobSpec in aiplatform v1 custom_job.proto (#1165) (847ad78)
- add reserved_ip_ranges to CustomJobSpec in aiplatform v1beta1 custom_job.proto (847ad78)
- add template_metadata to PipelineJob in aiplatform v1beta1 pipeline_job.proto (#1186) (99aca4a)
- add version_id to Model in aiplatform v1beta1 model.proto (847ad78)
- allow creating featurestore without online node (#1180) (3224ae3)
- Allow users to specify timestamp split for vertex forecasting (#1187) (ee49e00)
- Make matching engine API public (#1192) (469db6b)
- rename Similarity to Examples, and similarity to examples in ExplanationParameters in aiplatform v1beta1 explanation.proto (847ad78)
Documentation
- fix type in docstring for map fields (847ad78)
v1.12.1
1.12.1 (2022-04-20)
Features
- Add endpoind_id arg to Endpoint#create (#1168) (4c21993)
- add ModelEvaluation support (#1167) (10f95cd)
Bug Fixes
Documentation
- endpoint.create => aiplatform.Endpoint.create (#1153) (1122a26)
- update changelog headers (#1164) (c1e899d)
- update model code snippet order in README (#1154) (404d7f1)
Miscellaneous Chores
v1.12.0
1.12.0 (2022-04-07)
Features
- add categorical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto (38f3711)
- add categorical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
- add disable_monitoring to Feature in aiplatform v1 feature.proto (38f3711)
- add disable_monitoring to Feature in aiplatform v1beta1 feature.proto (38f3711)
- Add done method for pipeline, training, and batch prediction jobs (#1062) (f3338fc)
- add import_features_analysis to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto (38f3711)
- add import_features_analysis to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
- add ImportModelEvaluation in aiplatform v1 model_service.proto (#1105) (ef5930c)
- add monitoring_config to EntityType in aiplatform v1 entity_type.proto (#1077) (38f3711)
- add monitoring_stats_anomalies to Feature in aiplatform v1 feature.proto (38f3711)
- add monitoring_stats_anomalies to Feature in aiplatform v1beta1 feature.proto (38f3711)
- add numerical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1 featurestore_monitoring.proto (38f3711)
- add numerical_threshold_config to FeaturestoreMonitoringConfig in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
- add objective to MonitoringStatsSpec in aiplatform v1 featurestore_service.proto (38f3711)
- add objective to MonitoringStatsSpec in aiplatform v1beta1 featurestore_service.proto (38f3711)
- add PredictRequestResponseLoggingConfig to Endpoint in aiplatform v1 endpoint.proto (#1072) (be0ccc4)
- add staleness_days to SnapshotAnalysis in aiplatform v1 featurestore_monitoring.proto (38f3711)
- add staleness_days to SnapshotAnalysis in aiplatform v1beta1 featurestore_monitoring.proto (38f3711)
- Add support for Vertex Tables Q1 regions (#1065) (6383d4f)
- add timeout arg across SDK (#1099) (184f7f3)
- Add timeout arguments to Endpoint.predict and Endpoint.explain (#1094) (cc59e60)
- Made display_name parameter optional for most calls (#882) (400b760)
- sdk: enable loading both JSON and YAML pipelines IR (#1089) (f2e70b1)
- v1beta1: add
service_account
toBatchPredictionJob
inbatch_prediction_job.proto
(#1084) (b7a5177)
Bug Fixes
- add resource manager utils to get project ID from project number (#1068) (f10a1d4)
- add self.wait() in operations after optional_sync supported resource creation (#1083) (79aeec1)
- Don't throw exception when getting representation of unrun GCA objects (#1071) (c9ba060)
- Fix import error string showing wrong pip install path (#1076) (74ffa19)
- Fixed getting project ID when running on Vertex AI; Fixes #852 (#943) (876cb33)
- Give aiplatform logging its own log namespace, let the user configure their own root logger (#1081) (fb78243)
- Honoring the model's supported_deployment_resources_types (#865) (db34b85)
- missing reference to logged_web_access_uris (#1056) (198a1b5)
- system tests failure from test_upload_and_deploy_xgboost_model (#1149) (c8422a9)
Documentation
- fix CustomContainerTrainingJob example in docstring (#1101) (d2fb9db)
- improve bigquery_destination_prefix docstring (#1098) (a46df64)
- Include time dependency in documentation for weight, time, and target columns. (#1102) (52273c2)
- samples: read, import, batch_serve, batch_create features (#1046) (80dd40d)
- Update AutoML Video docstring (#987) (6002d5d)
v1.11.0
1.11.0 (2022-03-03)
Features
- add additional_experiement flag in the tables and forecasting training job (#979) (5fe59a4)
- add TPU_V2 & TPU_V3 values to AcceleratorType in aiplatform v1/v1beta1 accelerator_type.proto (#1010) (09c2e8a)
- Added scheduling to CustomTrainingJob, CustomPythonPackageTrainingJob, CustomContainerTrainingJob (#970) (89078e0)
Bug Fixes
- deps: allow google-cloud-storage < 3.0.0dev (#1008) (1c34154)
- deps: require google-api-core>=1.31.5, >=2.3.2 (#1050) (dfbd68a)
- deps: require proto-plus>=1.15.0 (dfbd68a)
- enforce bq SchemaField field_type and mode using feature value_type (#1019) (095bea2)
- Fix create_lit_model_from_endpoint not accepting models that don't return a dictionary. (#1020) (b9a057d)
- loosen assertions for system test featurestore (#1040) (2ba404f)
- remove empty scripts kwarg in setup.py (#1014) (ef3fcc8)
- show logs when TFX pipelines are submitted (#976) (c10923b)
- update system test_model_upload to use BUILD_SPECIFIC_GCP_PROJECT (#1043) (e7d2719)
Documentation
v1.10.0
1.10.0 (2022-02-07)
Features
- _TrainingScriptPythonPackager to support folders (#812) (3aec6a7)
- add dedicated_resources to DeployedIndex in aiplatform v1beta1 index_endpoint.proto feat: add Scaling to OnlineServingConfig in aiplatform v1beta1 featurestore.proto chore: sort imports (#991) (7a7f0d4)
- add dedicated_resources to DeployedIndex message in aiplatform v1 index_endpoint.proto chore: sort imports (#990) (a814923)
- Add XAI SDK integration to TensorFlow models with LIT integration (#917) (ea2b5cf)
- Added
aiplatform.Model.update
method (#952) (44e208a) - Enable europe-west6 and northamerica-northeast2 regions (0f6b670)
- enable feature store batch serve to BigQuery and GCS for csv and tfrecord (#919) (c840728)
- enable feature store batch serve to Pandas DataFrame; fix: read instances uri for batch serve (#983) (e0fec36)
- enable feature store online serving (#918) (b8f5f82)
- enable ingest from pd.DataFrame (#977) (9289f2d)
- Open LIT with a deployed model (#963) (ea16849)
Bug Fixes
- Fixed BigQuery datasets that have colon in URI (#855) (153578f)
- Fixed integration test for model.upload (#975) (0ca3747)
- rename teardown fixture (#1004) (fcd0096)
Documentation
v1.9.0
Features
- add create in Featurestore, EntityType, Feature; add create_entity_type in Featurestore; add create_feature, batch_create_features in EntityType; add ingest_from_* for bq and gcs in EntityType; add and update delete with force delete nested resources (#872) (ba11c3d)
- Add LIT methods for Pandas DataFrame and TensorFlow saved model. (#874) (03cf301)
- Add support to create TensorboardExperiment (#909) (96ce738)
- Add support to create TensorboardRun (#912) (8df74a2)
Bug Fixes
- Fix timestamp proto util to default to timestamp at call time. (#933) (d72a254)
- Improve handling of undeploying model without redistributing remaining traffic (#898) (8a8a4fa)
- issues/192254729 (#914) (3ec620c)
- issues/192254729 (#915) (0f22ff6)
- use open_in_new_tab in the render method. (#926) (04618e0)