Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sync dmlc/tvm 20190319 #18

Merged
merged 35 commits into from
Mar 20, 2019
Merged

sync dmlc/tvm 20190319 #18

merged 35 commits into from
Mar 20, 2019

Conversation

wweic
Copy link

@wweic wweic commented Mar 20, 2019

python neo-tools/sync-with-dmlc.py

apivovarov and others added 30 commits March 19, 2019 20:37
* start adding reverse

* reverse updated

* reverse uses topi::flip

* typo fixed

* comment addressed

* exp simplified
* Add shapeof op in topi

* Add relay shape_of op

* Add constant folding for shape_of

* Allow shape op to specify dtype

* Add mxnet converter for shape_array

* lint

* lint

* Add doc
git clone --branch=xxx won't take a hash, switch from the hash to the
tag that represents that hash.
* adding _contrib_BilinearResize2D op from mxnet

* error fixed

* use resize instead of upsample
…#2821)

Code like this can't be built with NV OpenCL, and it needs an explicit type
  converison for ternary expression if return type is uchar.

       uchar i = 0, j = 0;
       uchar t = max((uchar)j, ((i > 0) ? (uchar)1 : (uchar)0));
This patch reverts one of my earlier patches (squashed in apache#2710) to
reduce bandwidth requirements of git clone, in this particular case we
are checking out a specific hash rather than a tag or branch name. The
--branch option to git clone permits tags or branches but does not
permit a specific hash.
…che#2757)

* [FRONTEND][TENSORFLOW] Enhance with left over patches from NNVM.

commit 76188a4
Author: Siva [email protected]
[NNVM][TENSORFLOW] bugfix. (apache#2444)

commit 6737739
Author: Ashutosh Parkhi [email protected]
[Tensorflow] Support for Crop (apache#2285)

commit f6c3f99
Author: Alexey Romanov [email protected]
[FRONTEND][TENSORFLOW] Use input shapes directly instead of 1-element lists (apache#2242)

commit e5d92e1
Author: Dominic Symes [email protected]
[FRONTEND][TENSORFLOW] Bugfix (apache#2326)

commit 00d509d
Author: Alexey Romanov [email protected]
[FRONTEND][TENSORFLOW] Support Unstack and Split (apache#2105)

commit df9d3ad
Author: Siva [email protected]
[FRONTEND][TENSORFLOW] Bugfix (apache#2267)

commit d1a0c90
Author: Zhebin Jin [email protected]
[FRONTEND][TENSORFLOW]Add Split and realdiv op support (apache#2123)
* Add Split and realdiv op support
* Fix the pad calculation in the case of dilated convolution

* 	* review comments

* 	* resnet fix.

* 	* review comments
@wweic wweic requested review from yongwww and zhiics March 20, 2019 03:41
@wweic wweic merged commit 47f3be0 into neo-ai:dev Mar 20, 2019
@wweic wweic deleted the wweic-sync-20190319 branch March 31, 2019 06:45
wweic pushed a commit that referenced this pull request Aug 16, 2019
* uTVM interfaces (#14)

* some minor interface changes

* implemented HostLowLevelDevice

* added MicroDeviceAPI

* implemented micro_common and added Python interfaces

* current status, semi implemented micro session

* added micro_common implementation and python interfaces (#18)

* added micro_common implementation and python interfaces (#18)

* current status, semi implemented

* host test working

* updated interfaces for MicroSession arguments allocation

* make somewhat lint compatible

* fix based on comments

* added rounding macro

* fix minor bug

* improvements based on comments

* Clean up `binutil.py` and make Python-3-compatible

* Change argument allocation design

* Address feedback and lint errors

* Improve binutil tests

* Simplify allocator (per @tqchen's suggestions)

* Doc/style fixes

* farts

* mcgee

* rodata section werks

(and so does `test_runtime_micro_workspace.py`)

* simple graph runtime werk

* TEMP

* ResNet works, yo

* First round of cleanup

* More cleanup

* runs a dyson over the code

* Another pass

* Fix `make lint` issues

* ready to pr... probably

* final

* Undo change

* Fix rebase resolution

* Minor fixes

* Undo changes to C codegen tests

* Add `obj_path` in `create_micro_lib`

* TEMP

* Address feedback

* Add missing TODO

* Partially address feedback

* Fix headers

* Switch to enum class for `SectionKind`

* Add missing ASF header

* Fix lint

* Fix lint again

* Fix lint

* Kill lint warnings

* Address feedback

* Change Python interface to MicroTVM

All interaction with the device is now through `Session` objects, which
are used through Python's `with` blocks.

* Reorder LowLevelDevice interface

* Store shared ptr to session in all alloced objects

* Move helper functions out of `tvm.micro`

* Switch static char arr to vector

* Improve general infra and code quality

Does not yet address all of tqchen's feedback

* Forgot a rename

* Fix lint

* Add ASF header

* Fix lint

* Partially address MarisaKirisame's feedback

* Lint

* Expose `MicroSession` as a node to Python

* Revert to using `Session` constructor

* Fix compiler error

* (Maybe) fix CI error

* Debugging

* Remove

* Quell lint

* Switch to stack-based session contexts

* Make uTVM less intrusive to host codegen

And use SSA for operands of generated ternary operators

* Inline UTVMArgs into UTVMTask struct

* Remove `HostLowLevelDevice` header

* Remove `BaseAddr` class

* Address feedback

* Add "utvm" prefix to global vars in runtime

* Fix lint

* Fix CI

* Fix `test_binutil.py`

* Fix submodules

* Remove ResNet tests

* Make `test_binutil.py` work with nose

* Fix CI

* I swear this actually fixes the binutil tests

* lint

* lint

* Add fcompile-compatible cross-compile func

* Add docs for uTVM runtime files

* Move pointer patching into `MicroSession`

* Fix lint

* First attempt at unifying cross-compile APIs

* Fix lint

* Rename `cross_compile` back to `cc`

* Address feedback

* Remove commented code

* Lint

* Figure out failing function

* Remove debugging code

* Change "micro_dev" target to "micro"

* Add checks in tests for whether uTVM is enabled

* Add TODO for 32-bit support

* Rename more "micro_dev" to "micro"

* Undo rename

We already have `tvm.micro` as a namespace.  Can't have it as a method
as well.

* Fix failing CI

Thanks to @tqchen for finding this bug.  Emitting ternary operators for
`min` and `max` causes concurrency bugs in CUDA, so we're moving the
ternary op emissions from `CodeGenC` to `CodeGenCHost`.

* Address feedback

* Fix lint
wweic pushed a commit that referenced this pull request Sep 6, 2019
* uTVM interfaces (#14)

* some minor interface changes

* implemented HostLowLevelDevice

* added MicroDeviceAPI

* implemented micro_common and added Python interfaces

* current status, semi implemented micro session

* added micro_common implementation and python interfaces (#18)

* added micro_common implementation and python interfaces (#18)

* current status, semi implemented

* host test working

* updated interfaces for MicroSession arguments allocation

* make somewhat lint compatible

* fix based on comments

* added rounding macro

* fix minor bug

* improvements based on comments

* Clean up `binutil.py` and make Python-3-compatible

* Change argument allocation design

* Address feedback and lint errors

* Improve binutil tests

* Simplify allocator (per @tqchen's suggestions)

* Doc/style fixes

* farts

* mcgee

* rodata section werks

(and so does `test_runtime_micro_workspace.py`)

* simple graph runtime werk

* TEMP

* ResNet works, yo

* First round of cleanup

* More cleanup

* runs a dyson over the code

* Another pass

* Fix `make lint` issues

* ready to pr... probably

* final

* Undo change

* Fix rebase resolution

* Minor fixes

* Undo changes to C codegen tests

* Add `obj_path` in `create_micro_lib`

* TEMP

* Address feedback

* Add missing TODO

* Partially address feedback

* Fix headers

* Switch to enum class for `SectionKind`

* Add missing ASF header

* Fix lint

* Fix lint again

* Fix lint

* Kill lint warnings

* Address feedback

* Change Python interface to MicroTVM

All interaction with the device is now through `Session` objects, which
are used through Python's `with` blocks.

* Reorder LowLevelDevice interface

* Store shared ptr to session in all alloced objects

* Move helper functions out of `tvm.micro`

* Switch static char arr to vector

* Improve general infra and code quality

Does not yet address all of tqchen's feedback

* Forgot a rename

* Fix lint

* Add ASF header

* Fix lint

* Partially address MarisaKirisame's feedback

* Lint

* Expose `MicroSession` as a node to Python

* Revert to using `Session` constructor

* Fix compiler error

* (Maybe) fix CI error

* Debugging

* Remove

* Quell lint

* Switch to stack-based session contexts

* Make uTVM less intrusive to host codegen

And use SSA for operands of generated ternary operators

* Inline UTVMArgs into UTVMTask struct

* Remove `HostLowLevelDevice` header

* Remove `BaseAddr` class

* Address feedback

* Add "utvm" prefix to global vars in runtime

* Fix lint

* Fix CI

* Fix `test_binutil.py`

* Fix submodules

* Remove ResNet tests

* Make `test_binutil.py` work with nose

* Fix CI

* I swear this actually fixes the binutil tests

* lint

* lint

* Add fcompile-compatible cross-compile func

* Add docs for uTVM runtime files

* Move pointer patching into `MicroSession`

* Fix lint

* First attempt at unifying cross-compile APIs

* Fix lint

* Rename `cross_compile` back to `cc`

* Address feedback

* Remove commented code

* Lint

* Figure out failing function

* Remove debugging code

* Change "micro_dev" target to "micro"

* Add checks in tests for whether uTVM is enabled

* Add TODO for 32-bit support

* Rename more "micro_dev" to "micro"

* Undo rename

We already have `tvm.micro` as a namespace.  Can't have it as a method
as well.

* Fix failing CI

Thanks to @tqchen for finding this bug.  Emitting ternary operators for
`min` and `max` causes concurrency bugs in CUDA, so we're moving the
ternary op emissions from `CodeGenC` to `CodeGenCHost`.

* Address feedback

* Fix lint
zhiics pushed a commit that referenced this pull request Oct 11, 2019
* uTVM interfaces (#14)

* some minor interface changes

* implemented HostLowLevelDevice

* added MicroDeviceAPI

* implemented micro_common and added Python interfaces

* current status, semi implemented micro session

* added micro_common implementation and python interfaces (#18)

* added micro_common implementation and python interfaces (#18)

* current status, semi implemented

* host test working

* updated interfaces for MicroSession arguments allocation

* make somewhat lint compatible

* fix based on comments

* added rounding macro

* fix minor bug

* improvements based on comments

* Clean up `binutil.py` and make Python-3-compatible

* Change argument allocation design

* Address feedback and lint errors

* Improve binutil tests

* Simplify allocator (per @tqchen's suggestions)

* Doc/style fixes

* farts

* mcgee

* rodata section werks

(and so does `test_runtime_micro_workspace.py`)

* simple graph runtime werk

* TEMP

* ResNet works, yo

* First round of cleanup

* More cleanup

* runs a dyson over the code

* Another pass

* Fix `make lint` issues

* ready to pr... probably

* final

* Undo change

* Fix rebase resolution

* Minor fixes

* Undo changes to C codegen tests

* Add `obj_path` in `create_micro_lib`

* TEMP

* Address feedback

* Add missing TODO

* Partially address feedback

* Fix headers

* Switch to enum class for `SectionKind`

* Add missing ASF header

* Fix lint

* Fix lint again

* Fix lint

* Kill lint warnings

* Address feedback

* Change Python interface to MicroTVM

All interaction with the device is now through `Session` objects, which
are used through Python's `with` blocks.

* Reorder LowLevelDevice interface

* Store shared ptr to session in all alloced objects

* Move helper functions out of `tvm.micro`

* Switch static char arr to vector

* Improve general infra and code quality

Does not yet address all of tqchen's feedback

* Forgot a rename

* Fix lint

* Add ASF header

* Fix lint

* Partially address MarisaKirisame's feedback

* Lint

* Expose `MicroSession` as a node to Python

* Revert to using `Session` constructor

* Fix compiler error

* (Maybe) fix CI error

* Debugging

* Remove

* Quell lint

* Switch to stack-based session contexts

* Make uTVM less intrusive to host codegen

And use SSA for operands of generated ternary operators

* Inline UTVMArgs into UTVMTask struct

* Remove `HostLowLevelDevice` header

* Remove `BaseAddr` class

* Address feedback

* Add "utvm" prefix to global vars in runtime

* Fix lint

* Fix CI

* Fix `test_binutil.py`

* Fix submodules

* Remove ResNet tests

* Make `test_binutil.py` work with nose

* Fix CI

* I swear this actually fixes the binutil tests

* lint

* lint

* Add fcompile-compatible cross-compile func

* Add docs for uTVM runtime files

* Move pointer patching into `MicroSession`

* Fix lint

* First attempt at unifying cross-compile APIs

* Fix lint

* Rename `cross_compile` back to `cc`

* Address feedback

* Remove commented code

* Lint

* Figure out failing function

* Remove debugging code

* Change "micro_dev" target to "micro"

* Add checks in tests for whether uTVM is enabled

* Add TODO for 32-bit support

* Rename more "micro_dev" to "micro"

* Undo rename

We already have `tvm.micro` as a namespace.  Can't have it as a method
as well.

* Fix failing CI

Thanks to @tqchen for finding this bug.  Emitting ternary operators for
`min` and `max` causes concurrency bugs in CUDA, so we're moving the
ternary op emissions from `CodeGenC` to `CodeGenCHost`.

* Address feedback

* Fix lint
trevor-m pushed a commit to trevor-m/tvm that referenced this pull request Jul 27, 2020
…generating (apache#5962)

* Code migration Start (neo-ai#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (neo-ai#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (neo-ai#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (neo-ai#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (neo-ai#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (neo-ai#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(neo-ai#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (neo-ai#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (neo-ai#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (neo-ai#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (neo-ai#13)

* Add basic tutorial

* migrate feature extraction (neo-ai#14)

* Add XGBModel & RPCRunnerWarpper (neo-ai#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (neo-ai#16)

* add workload registry

* update

* update

* add task scheduler (neo-ai#17)

* Add conv2d cuda tutorial with workload registry (neo-ai#18)

* add tune_test.py (the old tune_wkl.py) (neo-ai#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (neo-ai#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (neo-ai#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (neo-ai#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (neo-ai#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (neo-ai#25)

* Add Index simplification & API update (neo-ai#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (neo-ai#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (neo-ai#31)

* Add tensorize step

* State python api update (neo-ai#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (neo-ai#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (neo-ai#32)

* Improve relay integration (neo-ai#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (neo-ai#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (neo-ai#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (neo-ai#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (neo-ai#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (neo-ai#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (neo-ai#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (neo-ai#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
trevor-m pushed a commit to trevor-m/tvm that referenced this pull request Aug 26, 2020
…generating (apache#5962)

* Code migration Start (neo-ai#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (neo-ai#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (neo-ai#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (neo-ai#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (neo-ai#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (neo-ai#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(neo-ai#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (neo-ai#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (neo-ai#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (neo-ai#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (neo-ai#13)

* Add basic tutorial

* migrate feature extraction (neo-ai#14)

* Add XGBModel & RPCRunnerWarpper (neo-ai#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (neo-ai#16)

* add workload registry

* update

* update

* add task scheduler (neo-ai#17)

* Add conv2d cuda tutorial with workload registry (neo-ai#18)

* add tune_test.py (the old tune_wkl.py) (neo-ai#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (neo-ai#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (neo-ai#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (neo-ai#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (neo-ai#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (neo-ai#25)

* Add Index simplification & API update (neo-ai#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (neo-ai#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (neo-ai#31)

* Add tensorize step

* State python api update (neo-ai#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (neo-ai#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (neo-ai#32)

* Improve relay integration (neo-ai#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (neo-ai#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (neo-ai#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (neo-ai#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (neo-ai#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (neo-ai#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (neo-ai#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (neo-ai#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
trevor-m pushed a commit to trevor-m/tvm that referenced this pull request Aug 26, 2020
…generating (apache#5962)

* Code migration Start (neo-ai#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (neo-ai#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (neo-ai#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (neo-ai#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (neo-ai#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (neo-ai#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(neo-ai#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (neo-ai#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (neo-ai#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (neo-ai#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (neo-ai#13)

* Add basic tutorial

* migrate feature extraction (neo-ai#14)

* Add XGBModel & RPCRunnerWarpper (neo-ai#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (neo-ai#16)

* add workload registry

* update

* update

* add task scheduler (neo-ai#17)

* Add conv2d cuda tutorial with workload registry (neo-ai#18)

* add tune_test.py (the old tune_wkl.py) (neo-ai#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (neo-ai#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (neo-ai#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (neo-ai#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (neo-ai#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (neo-ai#25)

* Add Index simplification & API update (neo-ai#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (neo-ai#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (neo-ai#31)

* Add tensorize step

* State python api update (neo-ai#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (neo-ai#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (neo-ai#32)

* Improve relay integration (neo-ai#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (neo-ai#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (neo-ai#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (neo-ai#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (neo-ai#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (neo-ai#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (neo-ai#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (neo-ai#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
trevor-m pushed a commit to trevor-m/tvm that referenced this pull request Sep 2, 2020
…generating (apache#5962)

* Code migration Start (neo-ai#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (neo-ai#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (neo-ai#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (neo-ai#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (neo-ai#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (neo-ai#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(neo-ai#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (neo-ai#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (neo-ai#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (neo-ai#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (neo-ai#13)

* Add basic tutorial

* migrate feature extraction (neo-ai#14)

* Add XGBModel & RPCRunnerWarpper (neo-ai#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (neo-ai#16)

* add workload registry

* update

* update

* add task scheduler (neo-ai#17)

* Add conv2d cuda tutorial with workload registry (neo-ai#18)

* add tune_test.py (the old tune_wkl.py) (neo-ai#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (neo-ai#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (neo-ai#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (neo-ai#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (neo-ai#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (neo-ai#25)

* Add Index simplification & API update (neo-ai#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (neo-ai#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (neo-ai#31)

* Add tensorize step

* State python api update (neo-ai#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (neo-ai#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (neo-ai#32)

* Improve relay integration (neo-ai#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (neo-ai#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (neo-ai#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (neo-ai#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (neo-ai#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (neo-ai#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (neo-ai#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (neo-ai#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
trevor-m pushed a commit that referenced this pull request Sep 3, 2020
…generating (apache#5962)

* Code migration Start (#1)

* Init commit: Code migration Start

* Add loop_state.cc/h

* Add ComputeDAG basic test

* Split transform_step out & Update more UTs (#3)

* Split transform_step out

* Update GetProducers & GetConsumers

* Update UTs

* Add UT for CacheReadWrite & Some bug fix

* Add search_task, measure and serialization (#4)

* Add FollowSplit & FollowFusedSplit tests

* Update dag.InferBound & its UT

* Add search_task, measure and serialization

* Update Serialization UT

* Add MetaTileRewritePolicy (#5)

* Add feature

* Add cost_model, meta_tile_rewrite_policy

* Add MetaTileRewritePolicy basic UT

* Basic Python API for State (#6)

* Add Basic Python API for State

* Add UTs for State

* Add Python API: Measure & Task (#7)

* Update the return value of state operation

* Add task

* Copy measure.py & utils.py

* Fix LocalBuilder

* Fix LocalRunner

* Add ansor.auto_schedule() API; First AutoSchedule working version(#8)

* Add basic Python support for ansor.auto_schedule

* Update AutoSchedule API

* Bug fix for get the attach point of a fused iter

* Update UT after infer bug fix

* Bug fix & Add python serialization API (#10)

* Delete C++ UT hack since Python is ready

* Add ndarray.non_empty

* Update Serialization python API

* Improve code style, python wrapper and test cases (#11)

* Update c++ code style and unit test

* Update python State wrapper and test cases

* fix unit tests

* Add RPCRunner & OpenCL/CUDA test (#12)

* Add RPCRunner & OpenCL search test

* Add CUDA search test

* Add RPCRunner test

* rebase to upstream/master

* Add Ansor basic tutorial (#13)

* Add basic tutorial

* migrate feature extraction (#14)

* Add XGBModel & RPCRunnerWarpper (#15)

* Add XGBModel & RPCRunnerWarpper

* Revert "Add Parallel Granularity Mutation"

* Migrate workload_registry.py (#16)

* add workload registry

* update

* update

* add task scheduler (#17)

* Add conv2d cuda tutorial with workload registry (#18)

* add tune_test.py (the old tune_wkl.py) (#19)

* add tune_test.py (the old tune_wkl.py)

* update

* fix measure

* fix for gpu

* Code refine for tune_test.py & Add a pre load callback (#20)

* Bug fix for tutorials

* Add PreLoadMeasuredStates

* Add search_callback support for task tuner

* Code refine for tune_test.py

* Update

* Update

* Update

* Update

* Bug fix

* Add python custom sketch rule (#21)

* Add custom sketch rule

* Bug fix

* Ansor Relay Integration (without layout rewrite) (#22)

* relay integration

* Add tune_op_subgraph.py & Some code clean for tune_network.py (#23)

* Add single op tune scripts

* Add tune subgraph support

* Merge all op & all subgraph to one file

* Rename file

* add explicit_unroll_max_extent (#25)

* Add Index simplification & API update (#26)

* Add vectorized cooperative_fetching test

* Update math simplify for vectorized CF

* File rename

* Update tune_network

* API update

* Update PreLoadMeasuredStates & Some bug fix (#27)

* Add a threading wrapper to fix the test bug

* Set default TVM_USE_AUTO_SCHEDULER to false

* Update PreLoadMeasuredStates callback

* Add tensorize step for loop_state (#31)

* Add tensorize step

* State python api update (#33)

* Start to update api

* Add compute_dag to state

* API update

* kernel layout rewrite (#28)

* kernel layout rewrite

* remove some hacks

* add defuse_ops pass and move kernel_layout_rewrite pass after fuse_ops pass

* set TVM_RELAY_DISABLE_BUILD_CACHE for task extraction and prepare_layout_rewrite

* [cache flush] port cache flush to ansor (#32)

* Improve relay integration (#34)

* tmp checkpoint

* Improve relay integration

* Improve relay integration

* Fix xgb error & Simplify dispatcher (#35)

* Rename "MetaTileRewritePolicy" to "SketchPolicy". (#36)

* Rename "MetaTileRewritePolicy" to "SketchPolicy".

* Add a new class for auto_unroll_max_step, storage_offset in StageNode

* fix tune_op_subgraph.py

* rebase

* Migrate all node::make to noderef's construct function (#37)

* Start to move xxxnode::make to noderef()

* Update

* Update

* Finish transform_step

* Finish comute dag & auto schedule

* Update

* Update

* Update

* Update

* Update

* Code refine

* Code refine

* Code refine

* Update

* Update

* Some lint fix & Recover the double constructor of tvm::PrimExpr (#39)

* lint fix

* clang-format-fix

* pylint fix

* Update

* Recover the double constructor of tvm::PrimExpr

* Fix pylint

* pylint fix

* pylint fix

* Add MutateComputeLocation and MutateParallel in evolutionary search (#40)

* Add MutateComputeLocation and MutateParallel in evolutionary search

* fix lint

* Improve loop state python API (stage_tensors -> stage_ops) (#41)

* improve loop state python API (stage_tensors -> stage_ops)

* fix

* ComputeDAG bug fix & Add Custom TensorCore Matmul Example (#42)

* Bug Fix

* Sample example of Custom TensorCore Matmul

* Rever Commits, Start to build minimum Ansor system

* Code clean for minimum Ansor system

* Bug fix & Delete AccessAnalyzer

* Delete attachmap & Code clean

* Doc update

Update statenode::stages from vector to Array

* Headfile update & Python doc update

* clang-format fix

* pylint fix

* Update

* Doc update

* Update

* Bug fix after code merge to the new master

* clang-format fix

* Update

* Update

* Update std::vector to Array; Update verbosity setting; Some commemts
addressed

* std::vector->Array & std::string->String

* Add init_state to ComputeDAG

* Update

* Update some unordered_map to Map

* clang-format fix

* Comments addressed
Delete ReplayAndInferBound
Delete ReplaySteps & InferBoundCommon

* Lint fix

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Rename ansor namespace to auto_schedule

* Update

* Rename ThreadPool to ParallelFor

* Add parallel_for

* Remove ThreadPool

* Update python/tvm/auto_schedule/auto_schedule.py

* trigger CI

Co-authored-by: Lianmin Zheng <[email protected]>
Co-authored-by: Minmin Sun (孙敏敏) <[email protected]>
Co-authored-by: Zhao Wu <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.