-
Notifications
You must be signed in to change notification settings - Fork 160
Device Guard and Virtualization Based Security in Windows
Most of the Device Guard and Virtualization-Based Security features are Automatically enabled by default on capable and modern hardware. The rest of them will be enabled and configured to the most secure state after you apply the Microsoft Security Baselines 23H2 or later.
The Harden Windows Security Module has a feature that is accessible through confirm-SystemCompliance
cmdlet. It will let you scan your system and verify the implementations of the Device Guard policies.
UEFI locked security measures are rooted in Proof of Physical Presence and they can't be disabled by modifying Group Policy, registry keys or other Administrative tasks.
The only way to disable UEFI locked security measures is to have physical access to the computer, reboot and access the UEFI settings, supply the credentials to access the UEFI, turn off Secure Boot, reboot the system and then you will be able to disable those security measures with Administrator privileges.
-
Secure boot (without requiring DMA protection) for Virtualization-Based Security CSP
- This is in accordance with Microsoft's recommendation. This option provides Secure Boot with as much protection as is supported by a given computer’s hardware. A computer with input/output memory management units (IOMMUs) will have Secure Boot with DMA protection. A computer without IOMMUs will simply have Secure Boot enabled.
- Secure boot has 2 parts, part 1 is enforced using the Group Policy by this module, but for part 2, you need to enable Secure Boot in your UEFI firmware settings if it's not enabled by default (which is the case on older hardware).
- (Kernel) DMA protection hardware requirements
-
Virtualization-based protection of Code Integrity + UEFI Lock CSP
-
System Guard Secure Launch and SMM protection (Firmware Protection) CSP
-
Local Security Authority (LSA) process Protection + UEFI Lock CSP
- Standard hardware security not supported
- This means that your device does not meet at least one of the requirements of Standard Hardware Security.
- Your device meets the requirements for Standard Hardware Security.
- Your device meets the requirements for Enhanced Hardware Security
- Your device has all Secured-core PC features enabled
- Create AppControl Policy
- Create Supplemental Policy
- System Information
- Configure Policy Rule Options
- Simulation
- Allow New Apps
- Build New Certificate
- Create Policy From Event Logs
- Create Policy From MDE Advanced Hunting
- Merge App Control Policies
- Deploy App Control Policy
- Get Code Integrity Hashes
- Get Secure Policy Settings
- Update
- Introduction
- App Control for Lightly Managed Devices
- App Control for Fully managed device - Variant 1
- App Control for Fully managed device - Variant 2
- App Control for Fully managed device - Variant 3
- App Control for Fully managed device - Variant 4
- App Control Notes
- How to Create and Deploy a Signed App Control Policy
- Fast and Automatic Microsoft Recommended Driver Block Rules updates
- App Control policy for BYOVD Kernel mode only protection
- EKUs in App Control for Business Policies
- App Control Rule Levels Comparison and Guide
- Script Enforcement and PowerShell Constrained Language Mode in App Control Policies
- How to Use Microsoft Defender for Endpoint Advanced Hunting With App Control
- App Control Frequently Asked Questions (FAQs)
- New-WDACConfig
- New-SupplementalWDACConfig
- Remove-WDACConfig
- Edit-WDACConfig
- Edit-SignedWDACConfig
- Deploy-SignedWDACConfig
- Confirm-WDACConfig
- New-DenyWDACConfig
- Set-CommonWDACConfig
- New-KernelModeWDACConfig
- Get-CommonWDACConfig
- Remove-CommonWDACConfig
- Assert-WDACConfigIntegrity
- Test-CiPolicy
- Get-CiFileHashes
- Get-CIPolicySetting
- Create Bootable USB flash drive with no 3rd party tools
- Event Viewer
- Group Policy
- How to compact your OS and free up extra space
- Hyper V
- Overrides for Microsoft Security Baseline
- Git GitHub Desktop and Mandatory ASLR
- Signed and Verified commits with GitHub desktop
- About TLS, DNS, Encryption and OPSEC concepts
- Things to do when clean installing Windows
- Comparison of security benchmarks
- BitLocker, TPM and Pluton | What Are They and How Do They Work
- How to Detect Changes in User and Local Machine Certificate Stores in Real Time Using PowerShell
- Cloning Personal and Enterprise Repositories Using GitHub Desktop
- Only a Small Portion of The Windows OS Security Apparatus
- Rethinking Trust: Advanced Security Measures for High‐Stakes Systems
- Clean Source principle, Azure and Privileged Access Workstations
- How to Securely Connect to Azure VMs and Use RDP
- Basic PowerShell tricks and notes
- Basic PowerShell tricks and notes Part 2
- Basic PowerShell tricks and notes Part 3
- Basic PowerShell tricks and notes Part 4
- Basic PowerShell tricks and notes Part 5
- How To Access All Stream Outputs From Thread Jobs In PowerShell In Real Time
- PowerShell Best Practices To Follow When Coding
- How To Asynchronously Access All Stream Outputs From Background Jobs In PowerShell
- Powershell Dynamic Parameters and How to Add Them to the Get‐Help Syntax
- RunSpaces In PowerShell
- How To Use Reflection And Prevent Using Internal & Private C# Methods in PowerShell