Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ARM: dts: nexus4: initial dts #6

Merged

Conversation

devbis
Copy link

@devbis devbis commented Sep 6, 2021

Add initial support for LGE Nexus 4 (mako)
Works:

  • regulators
  • emmc
  • wifi
  • lcd backlight with external driver

Copy link
Owner

@okias okias left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

overall good, few nitpicks :)

arch/arm/boot/dts/qcom-apq8064-lge-nexus4-mako.dts Outdated Show resolved Hide resolved
arch/arm/boot/dts/qcom-apq8064-lge-nexus4-mako.dts Outdated Show resolved Hide resolved
arch/arm/boot/dts/qcom-apq8064-lge-nexus4-mako.dts Outdated Show resolved Hide resolved
Add initial support for LGE Nexus 4 (mako)
Works:
- regulators
- emmc
- wifi
- lcd backlight with external driver

Signed-off-by: Ivan Belokobylskiy <[email protected]>
@devbis devbis force-pushed the qcom-apq8064-mainline-mako-dts branch from ba00e60 to 1e9e4a9 Compare September 6, 2021 20:51
@devbis devbis requested a review from okias September 6, 2021 20:53
@okias okias merged commit 12841ed into okias:qcom-apq8064-mainline Sep 6, 2021
okias pushed a commit that referenced this pull request Sep 8, 2021
When removing the driver module w/o bringing an interface up before
the error below occurs. Reason seems to be that cancel_work_sync() is
called in t3_sge_stop() for a queue that hasn't been initialized yet.

[10085.941785] ------------[ cut here ]------------
[10085.941799] WARNING: CPU: 1 PID: 5850 at kernel/workqueue.c:3074 __flush_work+0x3ff/0x480
[10085.941819] Modules linked in: vfat snd_hda_codec_hdmi fat snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio led_class ee1004 iTCO_
wdt intel_tcc_cooling x86_pkg_temp_thermal coretemp aesni_intel crypto_simd cryptd snd_hda_intel snd_intel_dspcfg snd_hda_codec snd_hda_core r
8169 snd_pcm realtek mdio_devres snd_timer snd i2c_i801 i2c_smbus libphy i915 i2c_algo_bit cxgb3(-) intel_gtt ttm mdio drm_kms_helper mei_me s
yscopyarea sysfillrect sysimgblt mei fb_sys_fops acpi_pad sch_fq_codel crypto_user drm efivarfs ext4 mbcache jbd2 crc32c_intel
[10085.941944] CPU: 1 PID: 5850 Comm: rmmod Not tainted 5.14.0-rc7-next-20210826+ #6
[10085.941974] Hardware name: System manufacturer System Product Name/PRIME H310I-PLUS, BIOS 2603 10/21/2019
[10085.941992] RIP: 0010:__flush_work+0x3ff/0x480
[10085.942003] Code: c0 74 6b 65 ff 0d d1 bd 78 75 e8 bc 2f 06 00 48 c7 c6 68 b1 88 8a 48 c7 c7 e0 5f b4 8b 45 31 ff e8 e6 66 04 00 e9 4b fe ff ff <0f> 0b 45 31 ff e9 41 fe ff ff e8 72 c1 79 00 85 c0 74 87 80 3d 22
[10085.942036] RSP: 0018:ffffa1744383fc08 EFLAGS: 00010246
[10085.942048] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000923
[10085.942062] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff91c901710a88
[10085.942076] RBP: ffffa1744383fce8 R08: 0000000000000001 R09: 0000000000000001
[10085.942090] R10: 00000000000000c2 R11: 0000000000000000 R12: ffff91c901710a88
[10085.942104] R13: 0000000000000000 R14: ffff91c909a96100 R15: 0000000000000001
[10085.942118] FS:  00007fe417837740(0000) GS:ffff91c969d00000(0000) knlGS:0000000000000000
[10085.942134] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[10085.942146] CR2: 000055a8d567ecd8 CR3: 0000000121690003 CR4: 00000000003706e0
[10085.942160] Call Trace:
[10085.942166]  ? __lock_acquire+0x3af/0x22e0
[10085.942177]  ? cancel_work_sync+0xb/0x10
[10085.942187]  __cancel_work_timer+0x128/0x1b0
[10085.942197]  ? __pm_runtime_resume+0x5b/0x90
[10085.942208]  cancel_work_sync+0xb/0x10
[10085.942217]  t3_sge_stop+0x2f/0x50 [cxgb3]
[10085.942234]  remove_one+0x26/0x190 [cxgb3]
[10085.942248]  pci_device_remove+0x39/0xa0
[10085.942258]  __device_release_driver+0x15e/0x240
[10085.942269]  driver_detach+0xd9/0x120
[10085.942278]  bus_remove_driver+0x53/0xd0
[10085.942288]  driver_unregister+0x2c/0x50
[10085.942298]  pci_unregister_driver+0x31/0x90
[10085.942307]  cxgb3_cleanup_module+0x10/0x18c [cxgb3]
[10085.942324]  __do_sys_delete_module+0x191/0x250
[10085.942336]  ? syscall_enter_from_user_mode+0x21/0x60
[10085.942347]  ? trace_hardirqs_on+0x2a/0xe0
[10085.942357]  __x64_sys_delete_module+0x13/0x20
[10085.942368]  do_syscall_64+0x40/0x90
[10085.942377]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[10085.942389] RIP: 0033:0x7fe41796323b

Fixes: 5e0b892 ("net:cxgb3: replace tasklets with works")
Signed-off-by: Heiner Kallweit <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Sep 8, 2021
If CONFIG_BLK_DEV_LOOP && CONFIG_MTD (at least; there might be other
combinations), lockdep complains circular locking dependency at
__loop_clr_fd(), for major_names_lock serves as a locking dependency
aggregating hub across multiple block modules.

 ======================================================
 WARNING: possible circular locking dependency detected
 5.14.0+ #757 Tainted: G            E
 ------------------------------------------------------
 systemd-udevd/7568 is trying to acquire lock:
 ffff88800f334d48 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x70/0x560

 but task is already holding lock:
 ffff888014a7d4a0 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x4d/0x400 [loop]

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> #6 (&lo->lo_mutex){+.+.}-{3:3}:
        lock_acquire+0xbe/0x1f0
        __mutex_lock_common+0xb6/0xe10
        mutex_lock_killable_nested+0x17/0x20
        lo_open+0x23/0x50 [loop]
        blkdev_get_by_dev+0x199/0x540
        blkdev_open+0x58/0x90
        do_dentry_open+0x144/0x3a0
        path_openat+0xa57/0xda0
        do_filp_open+0x9f/0x140
        do_sys_openat2+0x71/0x150
        __x64_sys_openat+0x78/0xa0
        do_syscall_64+0x3d/0xb0
        entry_SYSCALL_64_after_hwframe+0x44/0xae

 -> #5 (&disk->open_mutex){+.+.}-{3:3}:
        lock_acquire+0xbe/0x1f0
        __mutex_lock_common+0xb6/0xe10
        mutex_lock_nested+0x17/0x20
        bd_register_pending_holders+0x20/0x100
        device_add_disk+0x1ae/0x390
        loop_add+0x29c/0x2d0 [loop]
        blk_request_module+0x5a/0xb0
        blkdev_get_no_open+0x27/0xa0
        blkdev_get_by_dev+0x5f/0x540
        blkdev_open+0x58/0x90
        do_dentry_open+0x144/0x3a0
        path_openat+0xa57/0xda0
        do_filp_open+0x9f/0x140
        do_sys_openat2+0x71/0x150
        __x64_sys_openat+0x78/0xa0
        do_syscall_64+0x3d/0xb0
        entry_SYSCALL_64_after_hwframe+0x44/0xae

 -> #4 (major_names_lock){+.+.}-{3:3}:
        lock_acquire+0xbe/0x1f0
        __mutex_lock_common+0xb6/0xe10
        mutex_lock_nested+0x17/0x20
        blkdev_show+0x19/0x80
        devinfo_show+0x52/0x60
        seq_read_iter+0x2d5/0x3e0
        proc_reg_read_iter+0x41/0x80
        vfs_read+0x2ac/0x330
        ksys_read+0x6b/0xd0
        do_syscall_64+0x3d/0xb0
        entry_SYSCALL_64_after_hwframe+0x44/0xae

 -> #3 (&p->lock){+.+.}-{3:3}:
        lock_acquire+0xbe/0x1f0
        __mutex_lock_common+0xb6/0xe10
        mutex_lock_nested+0x17/0x20
        seq_read_iter+0x37/0x3e0
        generic_file_splice_read+0xf3/0x170
        splice_direct_to_actor+0x14e/0x350
        do_splice_direct+0x84/0xd0
        do_sendfile+0x263/0x430
        __se_sys_sendfile64+0x96/0xc0
        do_syscall_64+0x3d/0xb0
        entry_SYSCALL_64_after_hwframe+0x44/0xae

 -> #2 (sb_writers#3){.+.+}-{0:0}:
        lock_acquire+0xbe/0x1f0
        lo_write_bvec+0x96/0x280 [loop]
        loop_process_work+0xa68/0xc10 [loop]
        process_one_work+0x293/0x480
        worker_thread+0x23d/0x4b0
        kthread+0x163/0x180
        ret_from_fork+0x1f/0x30

 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
        lock_acquire+0xbe/0x1f0
        process_one_work+0x280/0x480
        worker_thread+0x23d/0x4b0
        kthread+0x163/0x180
        ret_from_fork+0x1f/0x30

 -> #0 ((wq_completion)loop0){+.+.}-{0:0}:
        validate_chain+0x1f0d/0x33e0
        __lock_acquire+0x92d/0x1030
        lock_acquire+0xbe/0x1f0
        flush_workqueue+0x8c/0x560
        drain_workqueue+0x80/0x140
        destroy_workqueue+0x47/0x4f0
        __loop_clr_fd+0xb4/0x400 [loop]
        blkdev_put+0x14a/0x1d0
        blkdev_close+0x1c/0x20
        __fput+0xfd/0x220
        task_work_run+0x69/0xc0
        exit_to_user_mode_prepare+0x1ce/0x1f0
        syscall_exit_to_user_mode+0x26/0x60
        do_syscall_64+0x4c/0xb0
        entry_SYSCALL_64_after_hwframe+0x44/0xae

 other info that might help us debug this:

 Chain exists of:
   (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(&lo->lo_mutex);
                                lock(&disk->open_mutex);
                                lock(&lo->lo_mutex);
   lock((wq_completion)loop0);

  *** DEADLOCK ***

 2 locks held by systemd-udevd/7568:
  #0: ffff888012554128 (&disk->open_mutex){+.+.}-{3:3}, at: blkdev_put+0x4c/0x1d0
  #1: ffff888014a7d4a0 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x4d/0x400 [loop]

 stack backtrace:
 CPU: 0 PID: 7568 Comm: systemd-udevd Tainted: G            E     5.14.0+ #757
 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 02/27/2020
 Call Trace:
  dump_stack_lvl+0x79/0xbf
  print_circular_bug+0x5d6/0x5e0
  ? stack_trace_save+0x42/0x60
  ? save_trace+0x3d/0x2d0
  check_noncircular+0x10b/0x120
  validate_chain+0x1f0d/0x33e0
  ? __lock_acquire+0x953/0x1030
  ? __lock_acquire+0x953/0x1030
  __lock_acquire+0x92d/0x1030
  ? flush_workqueue+0x70/0x560
  lock_acquire+0xbe/0x1f0
  ? flush_workqueue+0x70/0x560
  flush_workqueue+0x8c/0x560
  ? flush_workqueue+0x70/0x560
  ? sched_clock_cpu+0xe/0x1a0
  ? drain_workqueue+0x41/0x140
  drain_workqueue+0x80/0x140
  destroy_workqueue+0x47/0x4f0
  ? blk_mq_freeze_queue_wait+0xac/0xd0
  __loop_clr_fd+0xb4/0x400 [loop]
  ? __mutex_unlock_slowpath+0x35/0x230
  blkdev_put+0x14a/0x1d0
  blkdev_close+0x1c/0x20
  __fput+0xfd/0x220
  task_work_run+0x69/0xc0
  exit_to_user_mode_prepare+0x1ce/0x1f0
  syscall_exit_to_user_mode+0x26/0x60
  do_syscall_64+0x4c/0xb0
  entry_SYSCALL_64_after_hwframe+0x44/0xae
 RIP: 0033:0x7f0fd4c661f7
 Code: 00 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 13 fc ff ff
 RSP: 002b:00007ffd1c9e9fd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
 RAX: 0000000000000000 RBX: 00007f0fd46be6c8 RCX: 00007f0fd4c661f7
 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000006
 RBP: 0000000000000006 R08: 000055fff1eaf400 R09: 0000000000000000
 R10: 00007f0fd46be6c8 R11: 0000000000000246 R12: 0000000000000000
 R13: 0000000000000000 R14: 0000000000002f08 R15: 00007ffd1c9ea050

Commit 1c500ad ("loop: reduce the loop_ctl_mutex scope") is for
breaking "loop_ctl_mutex => &lo->lo_mutex" dependency chain. But enabling
a different block module results in forming circular locking dependency
due to shared major_names_lock mutex.

The simplest fix is to call probe function without holding
major_names_lock [1], but Christoph Hellwig does not like such idea.
Therefore, instead of holding major_names_lock in blkdev_show(),
introduce a different lock for blkdev_show() in order to break
"sb_writers#$N => &p->lock => major_names_lock" dependency chain.

Link: https://lkml.kernel.org/r/[email protected] [1]
Signed-off-by: Tetsuo Handa <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jens Axboe <[email protected]>
okias pushed a commit that referenced this pull request Sep 16, 2021
System crash was seen when I/O was run against an NVMe target and aborts
were occurring.

Crash stack is:

    -- relevant crash stack --
    BUG: kernel NULL pointer dereference, address: 0000000000000010
    :
    #6 [ffffae1f8666bdd0] page_fault at ffffffffa740122e
       [exception RIP: qla_nvme_abort_work+339]
       RIP: ffffffffc0f592e3  RSP: ffffae1f8666be80  RFLAGS: 00010297
       RAX: 0000000000000000  RBX: ffff9b581fc8af80  RCX: ffffffffc0f83bd0
       RDX: 0000000000000001  RSI: ffff9b5839c6c7c8  RDI: 0000000008000000
       RBP: ffff9b6832f85000   R8: ffffffffc0f68160   R9: ffffffffc0f70652
       R10: ffffae1f862ffdc8  R11: 0000000000000300  R12: 000000000000010d
       R13: 0000000000000000  R14: ffff9b5839cea000  R15: 0ffff9b583fab170
       ORIG_RAX: ffffffffffffffff   CS: 0010  SS: 0018
    #7 [ffffae1f8666be98] process_one_work at ffffffffa6aba184
    #8 [ffffae1f8666bed8] worker_thread at ffffffffa6aba39d
    grate-driver#9 [ffffae1f8666bf10] kthread at ffffffffa6ac06ed

The crash was due to a stale SRB structure access after it was aborted.
Fix the issue by removing stale access.

Link: https://lore.kernel.org/r/[email protected]
Fixes: 2cabf10 ("scsi: qla2xxx: Fix hang on NVMe command timeouts")
Cc: [email protected]
Reviewed-by: Himanshu Madhani <[email protected]>
Signed-off-by: Arun Easi <[email protected]>
Signed-off-by: Nilesh Javali <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
okias pushed a commit that referenced this pull request Sep 16, 2021
Ido Schimmel says:

====================
mlxsw: Add support for transceiver modules reset

This patchset prepares mlxsw for future transceiver modules related [1]
changes and adds reset support via the existing 'ETHTOOL_RESET'
interface.

Patches #1-#6 are relatively straightforward preparations.

Patch #7 tracks the number of logical ports that are mapped to the
transceiver module and the number of logical ports using it that are
administratively up. Needed for both reset support and power mode policy
support.

Patches #8-grate-driver#9 add required fields in device registers.

Patch grate-driver#10 implements support for ethtool_ops::reset in order to reset
transceiver modules.

[1] https://lore.kernel.org/netdev/[email protected]/
====================

Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Sep 20, 2021
It's later supposed to be either a correct address or NULL. Without the
initialization, it may contain an undefined value which results in the
following segmentation fault:

  # perf top --sort comm -g --ignore-callees=do_idle

terminates with:

  #0  0x00007ffff56b7685 in __strlen_avx2 () from /lib64/libc.so.6
  #1  0x00007ffff55e3802 in strdup () from /lib64/libc.so.6
  #2  0x00005555558cb139 in hist_entry__init (callchain_size=<optimized out>, sample_self=true, template=0x7fffde7fb110, he=0x7fffd801c250) at util/hist.c:489
  #3  hist_entry__new (template=template@entry=0x7fffde7fb110, sample_self=sample_self@entry=true) at util/hist.c:564
  #4  0x00005555558cb4ba in hists__findnew_entry (hists=hists@entry=0x5555561d9e38, entry=entry@entry=0x7fffde7fb110, al=al@entry=0x7fffde7fb420,
      sample_self=sample_self@entry=true) at util/hist.c:657
  #5  0x00005555558cba1b in __hists__add_entry (hists=hists@entry=0x5555561d9e38, al=0x7fffde7fb420, sym_parent=<optimized out>, bi=bi@entry=0x0, mi=mi@entry=0x0,
      sample=sample@entry=0x7fffde7fb4b0, sample_self=true, ops=0x0, block_info=0x0) at util/hist.c:288
  #6  0x00005555558cbb70 in hists__add_entry (sample_self=true, sample=0x7fffde7fb4b0, mi=0x0, bi=0x0, sym_parent=<optimized out>, al=<optimized out>, hists=0x5555561d9e38)
      at util/hist.c:1056
  #7  iter_add_single_cumulative_entry (iter=0x7fffde7fb460, al=<optimized out>) at util/hist.c:1056
  #8  0x00005555558cc8a4 in hist_entry_iter__add (iter=iter@entry=0x7fffde7fb460, al=al@entry=0x7fffde7fb420, max_stack_depth=<optimized out>, arg=arg@entry=0x7fffffff7db0)
      at util/hist.c:1231
  grate-driver#9  0x00005555557cdc9a in perf_event__process_sample (machine=<optimized out>, sample=0x7fffde7fb4b0, evsel=<optimized out>, event=<optimized out>, tool=0x7fffffff7db0)
      at builtin-top.c:842
  grate-driver#10 deliver_event (qe=<optimized out>, qevent=<optimized out>) at builtin-top.c:1202
  grate-driver#11 0x00005555558a9318 in do_flush (show_progress=false, oe=0x7fffffff80e0) at util/ordered-events.c:244
  grate-driver#12 __ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP, timestamp=timestamp@entry=0) at util/ordered-events.c:323
  grate-driver#13 0x00005555558a9789 in __ordered_events__flush (timestamp=<optimized out>, how=<optimized out>, oe=<optimized out>) at util/ordered-events.c:339
  grate-driver#14 ordered_events__flush (how=OE_FLUSH__TOP, oe=0x7fffffff80e0) at util/ordered-events.c:341
  grate-driver#15 ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP) at util/ordered-events.c:339
  grate-driver#16 0x00005555557cd631 in process_thread (arg=0x7fffffff7db0) at builtin-top.c:1114
  grate-driver#17 0x00007ffff7bb817a in start_thread () from /lib64/libpthread.so.0
  grate-driver#18 0x00007ffff5656dc3 in clone () from /lib64/libc.so.6

If you look at the frame #2, the code is:

488	 if (he->srcline) {
489          he->srcline = strdup(he->srcline);
490          if (he->srcline == NULL)
491              goto err_rawdata;
492	 }

If he->srcline is not NULL (it is not NULL if it is uninitialized rubbish),
it gets strdupped and strdupping a rubbish random string causes the problem.

Also, if you look at the commit 1fb7d06, it adds the srcline property
into the struct, but not initializing it everywhere needed.

Committer notes:

Now I see, when using --ignore-callees=do_idle we end up here at line
2189 in add_callchain_ip():

2181         if (al.sym != NULL) {
2182                 if (perf_hpp_list.parent && !*parent &&
2183                     symbol__match_regex(al.sym, &parent_regex))
2184                         *parent = al.sym;
2185                 else if (have_ignore_callees && root_al &&
2186                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2187                         /* Treat this symbol as the root,
2188                            forgetting its callees. */
2189                         *root_al = al;
2190                         callchain_cursor_reset(cursor);
2191                 }
2192         }

And the al that doesn't have the ->srcline field initialized will be
copied to the root_al, so then, back to:

1211 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1212                          int max_stack_depth, void *arg)
1213 {
1214         int err, err2;
1215         struct map *alm = NULL;
1216
1217         if (al)
1218                 alm = map__get(al->map);
1219
1220         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1221                                         iter->evsel, al, max_stack_depth);
1222         if (err) {
1223                 map__put(alm);
1224                 return err;
1225         }
1226
1227         err = iter->ops->prepare_entry(iter, al);
1228         if (err)
1229                 goto out;
1230
1231         err = iter->ops->add_single_entry(iter, al);
1232         if (err)
1233                 goto out;
1234

That al at line 1221 is what hist_entry_iter__add() (called from
sample__resolve_callchain()) saw as 'root_al', and then:

        iter->ops->add_single_entry(iter, al);

will go on with al->srcline with a bogus value, I'll add the above
sequence to the cset and apply, thanks!

Signed-off-by: Michael Petlan <[email protected]>
CC: Milian Wolff <[email protected]>
Cc: Jiri Olsa <[email protected]>
Fixes: 1fb7d06 ("perf report Use srcline from callchain for hist entries")
Link: https //lore.kernel.org/r/[email protected]
Reported-by: Juri Lelli <[email protected]>
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
okias pushed a commit that referenced this pull request Sep 20, 2021
FD uses xyarray__entry that may return NULL if an index is out of
bounds. If NULL is returned then a segv happens as FD unconditionally
dereferences the pointer. This was happening in a case of with perf
iostat as shown below. The fix is to make FD an "int*" rather than an
int and handle the NULL case as either invalid input or a closed fd.

  $ sudo gdb --args perf stat --iostat  list
  ...
  Breakpoint 1, perf_evsel__alloc_fd (evsel=0x5555560951a0, ncpus=1, nthreads=1) at evsel.c:50
  50      {
  (gdb) bt
   #0  perf_evsel__alloc_fd (evsel=0x5555560951a0, ncpus=1, nthreads=1) at evsel.c:50
   #1  0x000055555585c188 in evsel__open_cpu (evsel=0x5555560951a0, cpus=0x555556093410,
      threads=0x555556086fb0, start_cpu=0, end_cpu=1) at util/evsel.c:1792
   #2  0x000055555585cfb2 in evsel__open (evsel=0x5555560951a0, cpus=0x0, threads=0x555556086fb0)
      at util/evsel.c:2045
   #3  0x000055555585d0db in evsel__open_per_thread (evsel=0x5555560951a0, threads=0x555556086fb0)
      at util/evsel.c:2065
   #4  0x00005555558ece64 in create_perf_stat_counter (evsel=0x5555560951a0,
      config=0x555555c34700 <stat_config>, target=0x555555c2f1c0 <target>, cpu=0) at util/stat.c:590
   #5  0x000055555578e927 in __run_perf_stat (argc=1, argv=0x7fffffffe4a0, run_idx=0)
      at builtin-stat.c:833
   #6  0x000055555578f3c6 in run_perf_stat (argc=1, argv=0x7fffffffe4a0, run_idx=0)
      at builtin-stat.c:1048
   #7  0x0000555555792ee5 in cmd_stat (argc=1, argv=0x7fffffffe4a0) at builtin-stat.c:2534
   #8  0x0000555555835ed3 in run_builtin (p=0x555555c3f540 <commands+288>, argc=3,
      argv=0x7fffffffe4a0) at perf.c:313
   grate-driver#9  0x0000555555836154 in handle_internal_command (argc=3, argv=0x7fffffffe4a0) at perf.c:365
   grate-driver#10 0x000055555583629f in run_argv (argcp=0x7fffffffe2ec, argv=0x7fffffffe2e0) at perf.c:409
   grate-driver#11 0x0000555555836692 in main (argc=3, argv=0x7fffffffe4a0) at perf.c:539
  ...
  (gdb) c
  Continuing.
  Error:
  The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (uncore_iio_0/event=0x83,umask=0x04,ch_mask=0xF,fc_mask=0x07/).
  /bin/dmesg | grep -i perf may provide additional information.

  Program received signal SIGSEGV, Segmentation fault.
  0x00005555559b03ea in perf_evsel__close_fd_cpu (evsel=0x5555560951a0, cpu=1) at evsel.c:166
  166                     if (FD(evsel, cpu, thread) >= 0)

v3. fixes a bug in perf_evsel__run_ioctl where the sense of a branch was
    backward.

Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Stephane Eranian <[email protected]>
Link: http://lore.kernel.org/lkml/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
okias pushed a commit that referenced this pull request Sep 27, 2021
Host crashes when pci_enable_atomic_ops_to_root() is called for VFs with
virtual buses. The virtual buses added to SR-IOV have bus->self set to NULL
and host crashes due to this.

  PID: 4481   TASK: ffff89c6941b0000  CPU: 53  COMMAND: "bash"
  ...
   #3 [ffff9a9481713808] oops_end at ffffffffb9025cd6
   #4 [ffff9a9481713828] page_fault_oops at ffffffffb906e417
   #5 [ffff9a9481713888] exc_page_fault at ffffffffb9a0ad14
   #6 [ffff9a94817138b0] asm_exc_page_fault at ffffffffb9c00ace
      [exception RIP: pcie_capability_read_dword+28]
      RIP: ffffffffb952fd5c  RSP: ffff9a9481713960  RFLAGS: 00010246
      RAX: 0000000000000001  RBX: ffff89c6b1096000  RCX: 0000000000000000
      RDX: ffff9a9481713990  RSI: 0000000000000024  RDI: 0000000000000000
      RBP: 0000000000000080   R8: 0000000000000008   R9: ffff89c64341a2f8
      R10: 0000000000000002  R11: 0000000000000000  R12: ffff89c648bab000
      R13: 0000000000000000  R14: 0000000000000000  R15: ffff89c648bab0c8
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffff9a9481713988] pci_enable_atomic_ops_to_root at ffffffffb95359a6
   #8 [ffff9a94817139c0] bnxt_qplib_determine_atomics at ffffffffc08c1a33 [bnxt_re]
   grate-driver#9 [ffff9a94817139d0] bnxt_re_dev_init at ffffffffc08ba2d1 [bnxt_re]

Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit in Device
Control 2 is reserved for VFs.  The PF value applies to all associated PFs.

Return -EINVAL if pci_enable_atomic_ops_to_root() is called for a VF.

Link: https://lore.kernel.org/r/[email protected]
Fixes: 35f5ace ("RDMA/bnxt_re: Enable global atomic ops if platform supports")
Fixes: 430a236 ("PCI: Add pci_enable_atomic_ops_to_root()")
Signed-off-by: Selvin Xavier <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Andy Gospodarek <[email protected]>
okias pushed a commit that referenced this pull request Sep 27, 2021
Ido Schimmel says:

====================
mlxsw: Add support for IP-in-IP with IPv6 underlay

Currently, mlxsw only supports IP-in-IP with IPv4 underlay. Traffic
routed through 'gre' netdevs is encapsulated with IPv4 and GRE headers.
Similarly, incoming IPv4 GRE packets are decapsulated and routed in the
overlay VRF (which can be the same as the underlay VRF).

This patchset adds support for IPv6 underlay using the 'ip6gre' netdev.
Due to architectural differences between Spectrum-1 and later ASICs,
this functionality is only supported on Spectrum-2 onwards (the software
data path is used for Spectrum-1).

Patchset overview:

Patches #1-#5 are preparations.

Patches #6-grate-driver#9 add and extend required device registers.

Patches grate-driver#10-grate-driver#14 gradually add IPv6 underlay support.

A follow-up patchset will add net/forwarding/ selftests.
====================

Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Oct 5, 2021
As a full union is always sent, ensure all bytes of the union are
initialized with memset to avoid msan warnings of use of uninitialized
memory.

An example warning from the daemon test:

Uninitialized bytes in __interceptor_write at offset 71 inside [0x7ffd98da6280, 72)
==11602==WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x5597edccdbe4 in ion tools/lib/perf/lib.c:18:6
    #1 0x5597edccdbe4 in writen tools/lib/perf/lib.c:47:9
    #2 0x5597ed221d30 in send_cmd tools/perf/builtin-daemon.c:1376:22
    #3 0x5597ed21b48c in cmd_daemon tools/perf/builtin-daemon.c
    #4 0x5597ed1d6b67 in run_builtin tools/perf/perf.c:313:11
    #5 0x5597ed1d6036 in handle_internal_command tools/perf/perf.c:365:8
    #6 0x5597ed1d6036 in run_argv tools/perf/perf.c:409:2
    #7 0x5597ed1d6036 in main tools/perf/perf.c:539:3

SUMMARY: MemorySanitizer: use-of-uninitialized-value tools/lib/perf/lib.c:18:6 in ion
Exiting

Signed-off-by: Ian Rogers <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Link: http://lore.kernel.org/lkml/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
okias pushed a commit that referenced this pull request Oct 8, 2021
Biju Das says:

====================
Fillup stubs for Gigabit Ethernet driver support

The DMAC and EMAC blocks of Gigabit Ethernet IP found on RZ/G2L SoC are
similar to the R-Car Ethernet AVB IP.

The Gigabit Ethernet IP consists of Ethernet controller (E-MAC), Internal
TCP/IP Offload Engine (TOE)  and Dedicated Direct memory access controller
(DMAC).

With a few changes in the driver we can support both IPs.

This patch series is for adding Gigabit ethernet driver support to RZ/G2L SoC.

The number of patches after incorporatng RFC review comments is 18.
So split the patches into 2 patchsets (10 + 8).

This series is the second patchset, aims to fillup all the stubs for the
Gigabit Ethernet driver.

This patch series depend upon [1]
[1] https://lore.kernel.org/linux-renesas-soc/[email protected]/T/#t

RFC->V1:
 * used rx_max_buf_size instead of rx_2k_buffers feature bit.
 * renamed "rgeth" to "gbeth".
 * renamed ravb_rx_ring_free to ravb_rx_ring_free_rcar
 * renamed ravb_rx_ring_format to ravb_rx_ring_format_rcar
 * renamed ravb_alloc_rx_desc to ravb_alloc_rx_desc_rcar
 * renamed ravb_rcar_rx to ravb_rx_rcar
 * Added Sergey's Rb tag for patch #6.
 * Moved CSR0 initialization to patch #8.
====================

Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Oct 8, 2021
…r-mode'

Ido Schimmel says:

====================
ethtool: Add ability to control transceiver modules' power mode

This patchset extends the ethtool netlink API to allow user space to
control transceiver modules. Two specific APIs are added, but the plan
is to extend the interface with more APIs in the future (see "Future
plans").

This submission is a complete rework of a previous submission [1] that
tried to achieve the same goal by allowing user space to write to the
EEPROMs of these modules. It was rejected as it could have enabled user
space binary blob drivers.

However, the main issue is that by directly writing to some pages of
these EEPROMs, we are interfering with the entity that is controlling
the modules (kernel / device firmware). In addition, some functionality
cannot be implemented solely by writing to the EEPROM, as it requires
the assertion / de-assertion of hardware signals (e.g., "ResetL" pin in
SFF-8636).

Motivation
==========

The kernel can currently dump the contents of module EEPROMs to user
space via the ethtool legacy ioctl API or the new netlink API. These
dumps can then be parsed by ethtool(8) according to the specification
that defines the memory map of the EEPROM. For example, SFF-8636 [2] for
QSFP and CMIS [3] for QSFP-DD.

In addition to read-only elements, these specifications also define
writeable elements that can be used to control the behavior of the
module. For example, controlling whether the module is put in low or
high power mode to limit its power consumption.

The CMIS specification even defines a message exchange mechanism (CDB,
Command Data Block) on top of the module's memory map. This allows the
host to send various commands to the module. For example, to update its
firmware.

Implementation
==============

The ethtool netlink API is extended with two new messages,
'ETHTOOL_MSG_MODULE_SET' and 'ETHTOOL_MSG_MODULE_GET', that allow user
space to set and get transceiver module parameters. Specifically, the
'ETHTOOL_A_MODULE_POWER_MODE_POLICY' attribute allows user space to
control the power mode policy of the module in order to limit its power
consumption. See detailed description in patch #1.

The user API is designed to be generic enough so that it could be used
for modules with different memory maps (e.g., SFF-8636, CMIS).

The only implementation of the device driver API in this series is for a
MAC driver (mlxsw) where the module is controlled by the device's
firmware, but it is designed to be generic enough so that it could also
be used by implementations where the module is controlled by the kernel.

Testing and introspection
=========================

See detailed description in patches #1 and #5.

Patchset overview
=================

Patch #1 adds the initial infrastructure in ethtool along with the
ability to control transceiver modules' power mode.

Patches #2-#3 add required device registers in mlxsw.

Patch #4 implements in mlxsw the ethtool operations added in patch #1.

Patch #5 adds extended link states in order to allow user space to
troubleshoot link down issues related to transceiver modules.

Patch #6 adds support for these extended states in mlxsw.

Future plans
============

* Extend 'ETHTOOL_MSG_MODULE_SET' to control Tx output among other
attributes.

* Add new ethtool message(s) to update firmware on transceiver modules.

* Extend ethtool(8) to parse more diagnostic information from CMIS
modules. No kernel changes required.

[1] https://lore.kernel.org/netdev/[email protected]/
[2] https://members.snia.org/document/dl/26418
[3] http://www.qsfp-dd.com/wp-content/uploads/2021/05/CMIS5p0.pdf

Previous versions:
[4] https://lore.kernel.org/netdev/[email protected]/
[5] https://lore.kernel.org/netdev/[email protected]/
[6] https://lore.kernel.org/netdev/[email protected]/
[7] https://lore.kernel.org/netdev/[email protected]/
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
okias pushed a commit that referenced this pull request Oct 12, 2021
Ido Schimmel says:

====================
selftests: forwarding: Add ip6gre tests

This patchset adds forwarding selftests for ip6gre. The tests can be run
with veth pairs or with physical loopbacks.

Patch #1 adds a new config option to determine if 'skip_sw' / 'skip_hw'
flags are used when installing tc filters. By default, it is not set
which means the flags are not used. 'skip_sw' is useful to ensure
traffic is forwarded by the hardware data path.

Patch #2 adds a new helper function.

Patches #3-#4 add the forwarding selftests.

Patch #5 adds a mlxsw-specific selftest to validate correct behavior of
the 'decap_error' trap with IPv6 underlay.

Patches #6-#8 align the corresponding IPv4 underlay test to the IPv6
one.
====================

Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Oct 23, 2021
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:

  #0  context_switch (kernel/sched/core.c:4940:2)
  #1  __schedule (kernel/sched/core.c:6287:8)
  #2  schedule (kernel/sched/core.c:6366:3)
  #3  io_schedule (kernel/sched/core.c:8389:2)
  #4  wait_on_page_bit_common (mm/filemap.c:1356:4)
  #5  __lock_page (mm/filemap.c:1648:2)
  #6  lock_page (./include/linux/pagemap.h:625:3)
  #7  pagecache_get_page (mm/filemap.c:1910:4)
  #8  find_or_create_page (./include/linux/pagemap.h:420:9)
  grate-driver#9  defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
  grate-driver#10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
  grate-driver#11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
  grate-driver#12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
  grate-driver#13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
  grate-driver#14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
  grate-driver#15 vfs_ioctl (fs/ioctl.c:51:10)
  grate-driver#16 __do_sys_ioctl (fs/ioctl.c:874:11)
  grate-driver#17 __se_sys_ioctl (fs/ioctl.c:860:1)
  grate-driver#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
  grate-driver#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
  grate-driver#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
  grate-driver#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)

A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".

Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.

Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.

This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:

  $ cat create_thp_file.c
  #include <fcntl.h>
  #include <stdbool.h>
  #include <stdio.h>
  #include <stdint.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <sys/mman.h>

  static const char zeroes[1024 * 1024];
  static const size_t FILE_SIZE = 2 * 1024 * 1024;

  int main(int argc, char **argv)
  {
          if (argc != 2) {
                  fprintf(stderr, "usage: %s PATH\n", argv[0]);
                  return EXIT_FAILURE;
          }
          int fd = creat(argv[1], 0777);
          if (fd == -1) {
                  perror("creat");
                  return EXIT_FAILURE;
          }
          size_t written = 0;
          while (written < FILE_SIZE) {
                  ssize_t ret = write(fd, zeroes,
                                      sizeof(zeroes) < FILE_SIZE - written ?
                                      sizeof(zeroes) : FILE_SIZE - written);
                  if (ret < 0) {
                          perror("write");
                          return EXIT_FAILURE;
                  }
                  written += ret;
          }
          close(fd);
          fd = open(argv[1], O_RDONLY);
          if (fd == -1) {
                  perror("open");
                  return EXIT_FAILURE;
          }

          /*
           * Reserve some address space so that we can align the file mapping to
           * the huge page size.
           */
          void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
                                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
          if (placeholder_map == MAP_FAILED) {
                  perror("mmap (placeholder)");
                  return EXIT_FAILURE;
          }

          void *aligned_address =
                  (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));

          void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
                           MAP_SHARED | MAP_FIXED, fd, 0);
          if (map == MAP_FAILED) {
                  perror("mmap");
                  return EXIT_FAILURE;
          }
          if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
                  perror("madvise");
                  return EXIT_FAILURE;
          }

          char *line = NULL;
          size_t line_capacity = 0;
          FILE *smaps_file = fopen("/proc/self/smaps", "r");
          if (!smaps_file) {
                  perror("fopen");
                  return EXIT_FAILURE;
          }
          for (;;) {
                  for (size_t off = 0; off < FILE_SIZE; off += 4096)
                          ((volatile char *)map)[off];

                  ssize_t ret;
                  bool this_mapping = false;
                  while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
                          unsigned long start, end, huge;
                          if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
                                  this_mapping = (start <= (uintptr_t)map &&
                                                  (uintptr_t)map < end);
                          } else if (this_mapping &&
                                     sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
                                     huge > 0) {
                                  return EXIT_SUCCESS;
                          }
                  }

                  sleep(6);
                  rewind(smaps_file);
                  fflush(smaps_file);
          }
  }
  $ ./create_thp_file huge
  $ btrfs fi defrag -czstd ./huge

Reviewed-by: Josef Bacik <[email protected]>
Signed-off-by: Omar Sandoval <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
okias pushed a commit that referenced this pull request Oct 23, 2021
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5.

When discussing the patch that splits page cache THP in order to offline
the poisoned page, Noaya mentioned there is a bigger problem [1] that
prevents this from working since the page cache page will be truncated if
uncorrectable errors happen.  By looking this deeper it turns out this
approach (truncating poisoned page) may incur silent data loss for all
non-readonly filesystems if the page is dirty.  It may be worse for
in-memory filesystem, e.g.  shmem/tmpfs since the data blocks are actually
gone.

To solve this problem we could keep the poisoned dirty page in page cache
then notify the users on any later access, e.g.  page fault, read/write,
etc.  The clean page could be truncated as is since they can be reread
from disk later on.

The consequence is the filesystems may find poisoned page and manipulate
it as healthy page since all the filesystems actually don't check if the
page is poisoned or not in all the relevant paths except page fault.  In
general, we need make the filesystems be aware of poisoned page before we
could keep the poisoned page in page cache in order to solve the data loss
problem.

To make filesystems be aware of poisoned page we should consider:
- The page should be not written back: clearing dirty flag could prevent from
  writeback.
- The page should not be dropped (it shows as a clean page) by drop caches or
  other callers: the refcount pin from hwpoison could prevent from invalidating
  (called by cache drop, inode cache shrinking, etc), but it doesn't avoid
  invalidation in DIO path.
- The page should be able to get truncated/hole punched/unlinked: it works as it
  is.
- Notify users when the page is accessed, e.g. read/write, page fault and other
  paths (compression, encryption, etc).

The scope of the last one is huge since almost all filesystems need do it
once a page is returned from page cache lookup.  There are a couple of
options to do it:

1. Check hwpoison flag for every path, the most straightforward way.
2. Return NULL for poisoned page from page cache lookup, the most callsites
   check if NULL is returned, this should have least work I think.  But the
   error handling in filesystems just return -ENOMEM, the error code will incur
   confusion to the users obviously.
3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO), but this
   will involve significant amount of code change as well since all the paths
   need check if the pointer is ERR or not just like option #1.

I did prototype for both #1 and #3, but it seems #3 may require more
changes than #1.  For #3 ERR_PTR will be returned so all the callers need
to check the return value otherwise invalid pointer may be dereferenced,
but not all callers really care about the content of the page, for
example, partial truncate which just sets the truncated range in one page
to 0.  So for such paths it needs additional modification if ERR_PTR is
returned.  And if the callers have their own way to handle the problematic
pages we need to add a new FGP flag to tell FGP functions to return the
pointer to the page.

It may happen very rarely, but once it happens the consequence (data
corruption) could be very bad and it is very hard to debug.  It seems this
problem had been slightly discussed before, but seems no action was taken
at that time.  [2]

As the aforementioned investigation, it needs huge amount of work to solve
the potential data loss for all filesystems.  But it is much easier for
in-memory filesystems and such filesystems actually suffer more than
others since even the data blocks are gone due to truncating.  So this
patchset starts from shmem/tmpfs by taking option #1.

TODO:
* The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make
  get_hwpoison_page() call get_any_page()"), and this patch series make
  refcount check for unpoisoning shmem page fail.
* Expand to other filesystems.  But I haven't heard feedback from filesystem
  developers yet.

Patch breakdown:
Patch #1: cleanup, depended by patch #2
Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug
Patch #3: coding style cleanup
Patch #4: refactor and preparation.
Patch #5: keep the poisoned page in page cache and handle such case for all
          the paths.
Patch #6: the previous patches unblock page cache THP split, so this patch
          add page cache THP split support.

This patch (of 4):

A minor cleanup to the indent.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Yang Shi <[email protected]>
Reviewed-by: Naoya Horiguchi <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Peter Xu <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
okias pushed a commit that referenced this pull request Oct 27, 2021
Ido Schimmel says:

====================
mlxsw: Support multiple RIF MAC prefixes

Currently, mlxsw enforces that all the netdevs used as router interfaces
(RIFs) have the same MAC prefix (e.g., same 38 MSBs in Spectrum-1).
Otherwise, an error is returned to user space with extack. This patchset
relaxes the limitation through the use of RIF MAC profiles.

A RIF MAC profile is a hardware entity that represents a particular MAC
prefix which multiple RIFs can reference. Therefore, the number of
possible MAC prefixes is no longer one, but the number of profiles
supported by the device.

The ability to change the MAC of a particular netdev is useful, for
example, for users who use the netdev to connect to an upstream provider
that performs MAC filtering. Currently, such users are either forced to
negotiate with the provider or change the MAC address of all other
netdevs so that they share the same prefix.

Patchset overview:

Patches #1-#3 are preparations.

Patch #4 adds actual support for RIF MAC profiles.

Patch #5 exposes RIF MAC profiles as a devlink resource, so that user
space has visibility into the maximum number of profiles and current
occupancy. Useful for debugging and testing (next 3 patches).

Patches #6-#8 add both scale and functional tests.

Patch grate-driver#9 removes tests that validated the previous limitation. It is now
covered by patch #6 for devices that support a single profile.
====================

Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Oct 27, 2021
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:

  #0  context_switch (kernel/sched/core.c:4940:2)
  #1  __schedule (kernel/sched/core.c:6287:8)
  #2  schedule (kernel/sched/core.c:6366:3)
  #3  io_schedule (kernel/sched/core.c:8389:2)
  #4  wait_on_page_bit_common (mm/filemap.c:1356:4)
  #5  __lock_page (mm/filemap.c:1648:2)
  #6  lock_page (./include/linux/pagemap.h:625:3)
  #7  pagecache_get_page (mm/filemap.c:1910:4)
  #8  find_or_create_page (./include/linux/pagemap.h:420:9)
  grate-driver#9  defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
  grate-driver#10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
  grate-driver#11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
  grate-driver#12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
  grate-driver#13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
  grate-driver#14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
  grate-driver#15 vfs_ioctl (fs/ioctl.c:51:10)
  grate-driver#16 __do_sys_ioctl (fs/ioctl.c:874:11)
  grate-driver#17 __se_sys_ioctl (fs/ioctl.c:860:1)
  grate-driver#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
  grate-driver#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
  grate-driver#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
  grate-driver#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)

A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".

Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.

Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.

This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:

  $ cat create_thp_file.c
  #include <fcntl.h>
  #include <stdbool.h>
  #include <stdio.h>
  #include <stdint.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <sys/mman.h>

  static const char zeroes[1024 * 1024];
  static const size_t FILE_SIZE = 2 * 1024 * 1024;

  int main(int argc, char **argv)
  {
          if (argc != 2) {
                  fprintf(stderr, "usage: %s PATH\n", argv[0]);
                  return EXIT_FAILURE;
          }
          int fd = creat(argv[1], 0777);
          if (fd == -1) {
                  perror("creat");
                  return EXIT_FAILURE;
          }
          size_t written = 0;
          while (written < FILE_SIZE) {
                  ssize_t ret = write(fd, zeroes,
                                      sizeof(zeroes) < FILE_SIZE - written ?
                                      sizeof(zeroes) : FILE_SIZE - written);
                  if (ret < 0) {
                          perror("write");
                          return EXIT_FAILURE;
                  }
                  written += ret;
          }
          close(fd);
          fd = open(argv[1], O_RDONLY);
          if (fd == -1) {
                  perror("open");
                  return EXIT_FAILURE;
          }

          /*
           * Reserve some address space so that we can align the file mapping to
           * the huge page size.
           */
          void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
                                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
          if (placeholder_map == MAP_FAILED) {
                  perror("mmap (placeholder)");
                  return EXIT_FAILURE;
          }

          void *aligned_address =
                  (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));

          void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
                           MAP_SHARED | MAP_FIXED, fd, 0);
          if (map == MAP_FAILED) {
                  perror("mmap");
                  return EXIT_FAILURE;
          }
          if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
                  perror("madvise");
                  return EXIT_FAILURE;
          }

          char *line = NULL;
          size_t line_capacity = 0;
          FILE *smaps_file = fopen("/proc/self/smaps", "r");
          if (!smaps_file) {
                  perror("fopen");
                  return EXIT_FAILURE;
          }
          for (;;) {
                  for (size_t off = 0; off < FILE_SIZE; off += 4096)
                          ((volatile char *)map)[off];

                  ssize_t ret;
                  bool this_mapping = false;
                  while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
                          unsigned long start, end, huge;
                          if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
                                  this_mapping = (start <= (uintptr_t)map &&
                                                  (uintptr_t)map < end);
                          } else if (this_mapping &&
                                     sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
                                     huge > 0) {
                                  return EXIT_SUCCESS;
                          }
                  }

                  sleep(6);
                  rewind(smaps_file);
                  fflush(smaps_file);
          }
  }
  $ ./create_thp_file huge
  $ btrfs fi defrag -czstd ./huge

Reviewed-by: Josef Bacik <[email protected]>
Signed-off-by: Omar Sandoval <[email protected]>
Reviewed-by: David Sterba <[email protected]>
Signed-off-by: David Sterba <[email protected]>
okias pushed a commit that referenced this pull request Oct 29, 2021
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5.

When discussing the patch that splits page cache THP in order to offline
the poisoned page, Noaya mentioned there is a bigger problem [1] that
prevents this from working since the page cache page will be truncated if
uncorrectable errors happen.  By looking this deeper it turns out this
approach (truncating poisoned page) may incur silent data loss for all
non-readonly filesystems if the page is dirty.  It may be worse for
in-memory filesystem, e.g.  shmem/tmpfs since the data blocks are actually
gone.

To solve this problem we could keep the poisoned dirty page in page cache
then notify the users on any later access, e.g.  page fault, read/write,
etc.  The clean page could be truncated as is since they can be reread
from disk later on.

The consequence is the filesystems may find poisoned page and manipulate
it as healthy page since all the filesystems actually don't check if the
page is poisoned or not in all the relevant paths except page fault.  In
general, we need make the filesystems be aware of poisoned page before we
could keep the poisoned page in page cache in order to solve the data loss
problem.

To make filesystems be aware of poisoned page we should consider:
- The page should be not written back: clearing dirty flag could prevent from
  writeback.
- The page should not be dropped (it shows as a clean page) by drop caches or
  other callers: the refcount pin from hwpoison could prevent from invalidating
  (called by cache drop, inode cache shrinking, etc), but it doesn't avoid
  invalidation in DIO path.
- The page should be able to get truncated/hole punched/unlinked: it works as it
  is.
- Notify users when the page is accessed, e.g. read/write, page fault and other
  paths (compression, encryption, etc).

The scope of the last one is huge since almost all filesystems need do it
once a page is returned from page cache lookup.  There are a couple of
options to do it:

1. Check hwpoison flag for every path, the most straightforward way.
2. Return NULL for poisoned page from page cache lookup, the most callsites
   check if NULL is returned, this should have least work I think.  But the
   error handling in filesystems just return -ENOMEM, the error code will incur
   confusion to the users obviously.
3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO), but this
   will involve significant amount of code change as well since all the paths
   need check if the pointer is ERR or not just like option #1.

I did prototype for both #1 and #3, but it seems #3 may require more
changes than #1.  For #3 ERR_PTR will be returned so all the callers need
to check the return value otherwise invalid pointer may be dereferenced,
but not all callers really care about the content of the page, for
example, partial truncate which just sets the truncated range in one page
to 0.  So for such paths it needs additional modification if ERR_PTR is
returned.  And if the callers have their own way to handle the problematic
pages we need to add a new FGP flag to tell FGP functions to return the
pointer to the page.

It may happen very rarely, but once it happens the consequence (data
corruption) could be very bad and it is very hard to debug.  It seems this
problem had been slightly discussed before, but seems no action was taken
at that time.  [2]

As the aforementioned investigation, it needs huge amount of work to solve
the potential data loss for all filesystems.  But it is much easier for
in-memory filesystems and such filesystems actually suffer more than
others since even the data blocks are gone due to truncating.  So this
patchset starts from shmem/tmpfs by taking option #1.

TODO:
* The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make
  get_hwpoison_page() call get_any_page()"), and this patch series make
  refcount check for unpoisoning shmem page fail.
* Expand to other filesystems.  But I haven't heard feedback from filesystem
  developers yet.

Patch breakdown:
Patch #1: cleanup, depended by patch #2
Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug
Patch #3: coding style cleanup
Patch #4: refactor and preparation.
Patch #5: keep the poisoned page in page cache and handle such case for all
          the paths.
Patch #6: the previous patches unblock page cache THP split, so this patch
          add page cache THP split support.

This patch (of 4):

A minor cleanup to the indent.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Yang Shi <[email protected]>
Reviewed-by: Naoya Horiguchi <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Peter Xu <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
okias pushed a commit that referenced this pull request Oct 29, 2021
After commit 9298e63 ("bpf/tests: Add exhaustive tests of ALU
operand magnitudes"), when modprobe test_bpf.ko with JIT on mips64,
there exists segment fault due to the following reason:

  [...]
  ALU64_MOV_X: all register value magnitudes jited:1
  Break instruction in kernel code[#1]
  [...]

It seems that the related JIT implementations of some test cases
in test_bpf() have problems. At this moment, I do not care about
the segment fault while I just want to verify the test cases of
tail calls.

Based on the above background and motivation, add the following
module parameter test_suite to the test_bpf.ko:

  test_suite=<string>: only the specified test suite will be run, the
  string can be "test_bpf", "test_tail_calls" or "test_skb_segment".

If test_suite is not specified, but test_id, test_name or test_range
is specified, set 'test_bpf' as the default test suite. This is useful
to only test the corresponding test suite when specifying the valid
test_suite string.

Any invalid test suite will result in -EINVAL being returned and no
tests being run. If the test_suite is not specified or specified as
empty string, it does not change the current logic, all of the test
cases will be run.

Here are some test results:

 # dmesg -c
 # modprobe test_bpf
 # dmesg | grep Summary
 test_bpf: Summary: 1009 PASSED, 0 FAILED, [0/997 JIT'ed]
 test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed]
 test_bpf: test_skb_segment: Summary: 2 PASSED, 0 FAILED

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_suite=test_bpf
 # dmesg | tail -1
 test_bpf: Summary: 1009 PASSED, 0 FAILED, [0/997 JIT'ed]

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_suite=test_tail_calls
 # dmesg
 test_bpf: #0 Tail call leaf jited:0 21 PASS
 [...]
 test_bpf: #7 Tail call error path, index out of range jited:0 32 PASS
 test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed]

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_suite=test_skb_segment
 # dmesg
 test_bpf: #0 gso_with_rx_frags PASS
 test_bpf: #1 gso_linear_no_head_frag PASS
 test_bpf: test_skb_segment: Summary: 2 PASSED, 0 FAILED

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_id=1
 # dmesg
 test_bpf: test_bpf: set 'test_bpf' as the default test_suite.
 test_bpf: #1 TXA jited:0 54 51 50 PASS
 test_bpf: Summary: 1 PASSED, 0 FAILED, [0/1 JIT'ed]

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_suite=test_bpf test_name=TXA
 # dmesg
 test_bpf: #1 TXA jited:0 54 50 51 PASS
 test_bpf: Summary: 1 PASSED, 0 FAILED, [0/1 JIT'ed]

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_suite=test_tail_calls test_range=6,7
 # dmesg
 test_bpf: #6 Tail call error path, NULL target jited:0 41 PASS
 test_bpf: #7 Tail call error path, index out of range jited:0 32 PASS
 test_bpf: test_tail_calls: Summary: 2 PASSED, 0 FAILED, [0/2 JIT'ed]

 # rmmod test_bpf
 # dmesg -c
 # modprobe test_bpf test_suite=test_skb_segment test_id=1
 # dmesg
 test_bpf: #1 gso_linear_no_head_frag PASS
 test_bpf: test_skb_segment: Summary: 1 PASSED, 0 FAILED

By the way, the above segment fault has been fixed in the latest bpf-next
tree which contains the mips64 JIT rework.

Signed-off-by: Tiezhu Yang <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Tested-by: Johan Almbladh <[email protected]>
Acked-by: Johan Almbladh <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
okias pushed a commit that referenced this pull request Nov 1, 2021
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5.

When discussing the patch that splits page cache THP in order to offline
the poisoned page, Noaya mentioned there is a bigger problem [1] that
prevents this from working since the page cache page will be truncated if
uncorrectable errors happen.  By looking this deeper it turns out this
approach (truncating poisoned page) may incur silent data loss for all
non-readonly filesystems if the page is dirty.  It may be worse for
in-memory filesystem, e.g.  shmem/tmpfs since the data blocks are actually
gone.

To solve this problem we could keep the poisoned dirty page in page cache
then notify the users on any later access, e.g.  page fault, read/write,
etc.  The clean page could be truncated as is since they can be reread
from disk later on.

The consequence is the filesystems may find poisoned page and manipulate
it as healthy page since all the filesystems actually don't check if the
page is poisoned or not in all the relevant paths except page fault.  In
general, we need make the filesystems be aware of poisoned page before we
could keep the poisoned page in page cache in order to solve the data loss
problem.

To make filesystems be aware of poisoned page we should consider:
- The page should be not written back: clearing dirty flag could prevent from
  writeback.
- The page should not be dropped (it shows as a clean page) by drop caches or
  other callers: the refcount pin from hwpoison could prevent from invalidating
  (called by cache drop, inode cache shrinking, etc), but it doesn't avoid
  invalidation in DIO path.
- The page should be able to get truncated/hole punched/unlinked: it works as it
  is.
- Notify users when the page is accessed, e.g. read/write, page fault and other
  paths (compression, encryption, etc).

The scope of the last one is huge since almost all filesystems need do it
once a page is returned from page cache lookup.  There are a couple of
options to do it:

1. Check hwpoison flag for every path, the most straightforward way.
2. Return NULL for poisoned page from page cache lookup, the most callsites
   check if NULL is returned, this should have least work I think.  But the
   error handling in filesystems just return -ENOMEM, the error code will incur
   confusion to the users obviously.
3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO), but this
   will involve significant amount of code change as well since all the paths
   need check if the pointer is ERR or not just like option #1.

I did prototype for both #1 and #3, but it seems #3 may require more
changes than #1.  For #3 ERR_PTR will be returned so all the callers need
to check the return value otherwise invalid pointer may be dereferenced,
but not all callers really care about the content of the page, for
example, partial truncate which just sets the truncated range in one page
to 0.  So for such paths it needs additional modification if ERR_PTR is
returned.  And if the callers have their own way to handle the problematic
pages we need to add a new FGP flag to tell FGP functions to return the
pointer to the page.

It may happen very rarely, but once it happens the consequence (data
corruption) could be very bad and it is very hard to debug.  It seems this
problem had been slightly discussed before, but seems no action was taken
at that time.  [2]

As the aforementioned investigation, it needs huge amount of work to solve
the potential data loss for all filesystems.  But it is much easier for
in-memory filesystems and such filesystems actually suffer more than
others since even the data blocks are gone due to truncating.  So this
patchset starts from shmem/tmpfs by taking option #1.

TODO:
* The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make
  get_hwpoison_page() call get_any_page()"), and this patch series make
  refcount check for unpoisoning shmem page fail.
* Expand to other filesystems.  But I haven't heard feedback from filesystem
  developers yet.

Patch breakdown:
Patch #1: cleanup, depended by patch #2
Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug
Patch #3: coding style cleanup
Patch #4: refactor and preparation.
Patch #5: keep the poisoned page in page cache and handle such case for all
          the paths.
Patch #6: the previous patches unblock page cache THP split, so this patch
          add page cache THP split support.

This patch (of 4):

A minor cleanup to the indent.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Yang Shi <[email protected]>
Reviewed-by: Naoya Horiguchi <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Peter Xu <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Stephen Rothwell <[email protected]>
okias pushed a commit that referenced this pull request Nov 7, 2021
Host crashes when pci_enable_atomic_ops_to_root() is called for VFs with
virtual buses. The virtual buses added to SR-IOV have bus->self set to NULL
and host crashes due to this.

  PID: 4481   TASK: ffff89c6941b0000  CPU: 53  COMMAND: "bash"
  ...
   #3 [ffff9a9481713808] oops_end at ffffffffb9025cd6
   #4 [ffff9a9481713828] page_fault_oops at ffffffffb906e417
   #5 [ffff9a9481713888] exc_page_fault at ffffffffb9a0ad14
   #6 [ffff9a94817138b0] asm_exc_page_fault at ffffffffb9c00ace
      [exception RIP: pcie_capability_read_dword+28]
      RIP: ffffffffb952fd5c  RSP: ffff9a9481713960  RFLAGS: 00010246
      RAX: 0000000000000001  RBX: ffff89c6b1096000  RCX: 0000000000000000
      RDX: ffff9a9481713990  RSI: 0000000000000024  RDI: 0000000000000000
      RBP: 0000000000000080   R8: 0000000000000008   R9: ffff89c64341a2f8
      R10: 0000000000000002  R11: 0000000000000000  R12: ffff89c648bab000
      R13: 0000000000000000  R14: 0000000000000000  R15: ffff89c648bab0c8
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffff9a9481713988] pci_enable_atomic_ops_to_root at ffffffffb95359a6
   #8 [ffff9a94817139c0] bnxt_qplib_determine_atomics at ffffffffc08c1a33 [bnxt_re]
   grate-driver#9 [ffff9a94817139d0] bnxt_re_dev_init at ffffffffc08ba2d1 [bnxt_re]

Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit in Device
Control 2 is reserved for VFs.  The PF value applies to all associated VFs.

Return -EINVAL if pci_enable_atomic_ops_to_root() is called for a VF.

Link: https://lore.kernel.org/r/[email protected]
Fixes: 35f5ace ("RDMA/bnxt_re: Enable global atomic ops if platform supports")
Fixes: 430a236 ("PCI: Add pci_enable_atomic_ops_to_root()")
Signed-off-by: Selvin Xavier <[email protected]>
Signed-off-by: Bjorn Helgaas <[email protected]>
Reviewed-by: Andy Gospodarek <[email protected]>
okias pushed a commit that referenced this pull request Nov 9, 2021
It is generally unsafe to call put_device() with dpm_list_mtx held,
because the given device's release routine may carry out an action
depending on that lock which then may deadlock, so modify the
system-wide suspend and resume of devices to always drop dpm_list_mtx
before calling put_device() (and adjust white space somewhat while
at it).

For instance, this prevents the following splat from showing up in
the kernel log after a system resume in certain configurations:

[ 3290.969514] ======================================================
[ 3290.969517] WARNING: possible circular locking dependency detected
[ 3290.969519] 5.15.0+ #2420 Tainted: G S
[ 3290.969523] ------------------------------------------------------
[ 3290.969525] systemd-sleep/4553 is trying to acquire lock:
[ 3290.969529] ffff888117ab1138 ((wq_completion)hci0#2){+.+.}-{0:0}, at: flush_workqueue+0x87/0x4a0
[ 3290.969554]
               but task is already holding lock:
[ 3290.969556] ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.969571]
               which lock already depends on the new lock.

[ 3290.969573]
               the existing dependency chain (in reverse order) is:
[ 3290.969575]
               -> #3 (dpm_list_mtx){+.+.}-{3:3}:
[ 3290.969583]        __mutex_lock+0x9d/0xa30
[ 3290.969591]        device_pm_add+0x2e/0xe0
[ 3290.969597]        device_add+0x4d5/0x8f0
[ 3290.969605]        hci_conn_add_sysfs+0x43/0xb0 [bluetooth]
[ 3290.969689]        hci_conn_complete_evt.isra.71+0x124/0x750 [bluetooth]
[ 3290.969747]        hci_event_packet+0xd6c/0x28a0 [bluetooth]
[ 3290.969798]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969842]        process_one_work+0x2aa/0x650
[ 3290.969851]        worker_thread+0x39/0x400
[ 3290.969859]        kthread+0x142/0x170
[ 3290.969865]        ret_from_fork+0x22/0x30
[ 3290.969872]
               -> #2 (&hdev->lock){+.+.}-{3:3}:
[ 3290.969881]        __mutex_lock+0x9d/0xa30
[ 3290.969887]        hci_event_packet+0xba/0x28a0 [bluetooth]
[ 3290.969935]        hci_rx_work+0x213/0x640 [bluetooth]
[ 3290.969978]        process_one_work+0x2aa/0x650
[ 3290.969985]        worker_thread+0x39/0x400
[ 3290.969993]        kthread+0x142/0x170
[ 3290.969999]        ret_from_fork+0x22/0x30
[ 3290.970004]
               -> #1 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0}:
[ 3290.970013]        process_one_work+0x27d/0x650
[ 3290.970020]        worker_thread+0x39/0x400
[ 3290.970028]        kthread+0x142/0x170
[ 3290.970033]        ret_from_fork+0x22/0x30
[ 3290.970038]
               -> #0 ((wq_completion)hci0#2){+.+.}-{0:0}:
[ 3290.970047]        __lock_acquire+0x15cb/0x1b50
[ 3290.970054]        lock_acquire+0x26c/0x300
[ 3290.970059]        flush_workqueue+0xae/0x4a0
[ 3290.970066]        drain_workqueue+0xa1/0x130
[ 3290.970073]        destroy_workqueue+0x34/0x1f0
[ 3290.970081]        hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970130]        bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970195]        device_release+0x33/0x90
[ 3290.970201]        kobject_release+0x63/0x160
[ 3290.970211]        dpm_resume+0x164/0x3e0
[ 3290.970215]        dpm_resume_end+0xd/0x20
[ 3290.970220]        suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970229]        pm_suspend+0x26b/0x310
[ 3290.970236]        state_store+0x42/0x90
[ 3290.970243]        kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970251]        new_sync_write+0x125/0x1c0
[ 3290.970257]        vfs_write+0x360/0x3c0
[ 3290.970263]        ksys_write+0xa7/0xe0
[ 3290.970269]        do_syscall_64+0x3a/0x80
[ 3290.970276]        entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970284]
               other info that might help us debug this:

[ 3290.970285] Chain exists of:
                 (wq_completion)hci0#2 --> &hdev->lock --> dpm_list_mtx

[ 3290.970297]  Possible unsafe locking scenario:

[ 3290.970299]        CPU0                    CPU1
[ 3290.970300]        ----                    ----
[ 3290.970302]   lock(dpm_list_mtx);
[ 3290.970306]                                lock(&hdev->lock);
[ 3290.970310]                                lock(dpm_list_mtx);
[ 3290.970314]   lock((wq_completion)hci0#2);
[ 3290.970319]
                *** DEADLOCK ***

[ 3290.970321] 7 locks held by systemd-sleep/4553:
[ 3290.970325]  #0: ffff888103bcd448 (sb_writers#4){.+.+}-{0:0}, at: ksys_write+0xa7/0xe0
[ 3290.970341]  #1: ffff888115a14488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x103/0x1b0
[ 3290.970355]  #2: ffff888100f719e0 (kn->active#233){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x10c/0x1b0
[ 3290.970369]  #3: ffffffff82661048 (autosleep_lock){+.+.}-{3:3}, at: state_store+0x12/0x90
[ 3290.970384]  #4: ffffffff82658ac8 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x9f/0x310
[ 3290.970399]  #5: ffffffff827f2a48 (acpi_scan_lock){+.+.}-{3:3}, at: acpi_suspend_begin+0x4c/0x80
[ 3290.970416]  #6: ffffffff8280fca8 (dpm_list_mtx){+.+.}-{3:3}, at: dpm_resume+0x12e/0x3e0
[ 3290.970428]
               stack backtrace:
[ 3290.970431] CPU: 3 PID: 4553 Comm: systemd-sleep Tainted: G S                5.15.0+ #2420
[ 3290.970438] Hardware name: Dell Inc. XPS 13 9380/0RYJWW, BIOS 1.5.0 06/03/2019
[ 3290.970441] Call Trace:
[ 3290.970446]  dump_stack_lvl+0x44/0x57
[ 3290.970454]  check_noncircular+0x105/0x120
[ 3290.970468]  ? __lock_acquire+0x15cb/0x1b50
[ 3290.970474]  __lock_acquire+0x15cb/0x1b50
[ 3290.970487]  lock_acquire+0x26c/0x300
[ 3290.970493]  ? flush_workqueue+0x87/0x4a0
[ 3290.970503]  ? __raw_spin_lock_init+0x3b/0x60
[ 3290.970510]  ? lockdep_init_map_type+0x58/0x240
[ 3290.970519]  flush_workqueue+0xae/0x4a0
[ 3290.970526]  ? flush_workqueue+0x87/0x4a0
[ 3290.970544]  ? drain_workqueue+0xa1/0x130
[ 3290.970552]  drain_workqueue+0xa1/0x130
[ 3290.970561]  destroy_workqueue+0x34/0x1f0
[ 3290.970572]  hci_release_dev+0x49/0x180 [bluetooth]
[ 3290.970624]  bt_host_release+0x1d/0x30 [bluetooth]
[ 3290.970687]  device_release+0x33/0x90
[ 3290.970695]  kobject_release+0x63/0x160
[ 3290.970705]  dpm_resume+0x164/0x3e0
[ 3290.970710]  ? dpm_resume_early+0x251/0x3b0
[ 3290.970718]  dpm_resume_end+0xd/0x20
[ 3290.970723]  suspend_devices_and_enter+0x1a4/0xba0
[ 3290.970737]  pm_suspend+0x26b/0x310
[ 3290.970746]  state_store+0x42/0x90
[ 3290.970755]  kernfs_fop_write_iter+0x135/0x1b0
[ 3290.970764]  new_sync_write+0x125/0x1c0
[ 3290.970777]  vfs_write+0x360/0x3c0
[ 3290.970785]  ksys_write+0xa7/0xe0
[ 3290.970794]  do_syscall_64+0x3a/0x80
[ 3290.970803]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 3290.970811] RIP: 0033:0x7f41b1328164
[ 3290.970819] Code: 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 80 00 00 00 00 8b 05 4a d2 2c 00 48 63 ff 85 c0 75 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 f3 c3 66 90 55 53 48 89 d5 48 89 f3 48 83
[ 3290.970824] RSP: 002b:00007ffe6ae21b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 3290.970831] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f41b1328164
[ 3290.970836] RDX: 0000000000000004 RSI: 000055965e651070 RDI: 0000000000000004
[ 3290.970839] RBP: 000055965e651070 R08: 000055965e64f390 R09: 00007f41b1e3d1c0
[ 3290.970843] R10: 000000000000000a R11: 0000000000000246 R12: 0000000000000004
[ 3290.970846] R13: 0000000000000001 R14: 000055965e64f2b0 R15: 0000000000000004

Cc: All applicable <[email protected]>
Signed-off-by: Rafael J. Wysocki <[email protected]>
okias pushed a commit that referenced this pull request Nov 9, 2021
Patch series "Solve silent data loss caused by poisoned page cache (shmem/tmpfs)", v5.

When discussing the patch that splits page cache THP in order to offline
the poisoned page, Noaya mentioned there is a bigger problem [1] that
prevents this from working since the page cache page will be truncated
if uncorrectable errors happen.  By looking this deeper it turns out
this approach (truncating poisoned page) may incur silent data loss for
all non-readonly filesystems if the page is dirty.  It may be worse for
in-memory filesystem, e.g.  shmem/tmpfs since the data blocks are
actually gone.

To solve this problem we could keep the poisoned dirty page in page
cache then notify the users on any later access, e.g.  page fault,
read/write, etc.  The clean page could be truncated as is since they can
be reread from disk later on.

The consequence is the filesystems may find poisoned page and manipulate
it as healthy page since all the filesystems actually don't check if the
page is poisoned or not in all the relevant paths except page fault.  In
general, we need make the filesystems be aware of poisoned page before
we could keep the poisoned page in page cache in order to solve the data
loss problem.

To make filesystems be aware of poisoned page we should consider:

 - The page should be not written back: clearing dirty flag could
   prevent from writeback.

 - The page should not be dropped (it shows as a clean page) by drop
   caches or other callers: the refcount pin from hwpoison could prevent
   from invalidating (called by cache drop, inode cache shrinking, etc),
   but it doesn't avoid invalidation in DIO path.

 - The page should be able to get truncated/hole punched/unlinked: it
   works as it is.

 - Notify users when the page is accessed, e.g. read/write, page fault
   and other paths (compression, encryption, etc).

The scope of the last one is huge since almost all filesystems need do
it once a page is returned from page cache lookup.  There are a couple
of options to do it:

 1. Check hwpoison flag for every path, the most straightforward way.

 2. Return NULL for poisoned page from page cache lookup, the most
    callsites check if NULL is returned, this should have least work I
    think. But the error handling in filesystems just return -ENOMEM,
    the error code will incur confusion to the users obviously.

 3. To improve #2, we could return error pointer, e.g. ERR_PTR(-EIO),
    but this will involve significant amount of code change as well
    since all the paths need check if the pointer is ERR or not just
    like option #1.

I did prototypes for both #1 and #3, but it seems #3 may require more
changes than #1.  For #3 ERR_PTR will be returned so all the callers
need to check the return value otherwise invalid pointer may be
dereferenced, but not all callers really care about the content of the
page, for example, partial truncate which just sets the truncated range
in one page to 0.  So for such paths it needs additional modification if
ERR_PTR is returned.  And if the callers have their own way to handle
the problematic pages we need to add a new FGP flag to tell FGP
functions to return the pointer to the page.

It may happen very rarely, but once it happens the consequence (data
corruption) could be very bad and it is very hard to debug.  It seems
this problem had been slightly discussed before, but seems no action was
taken at that time.  [2]

As the aforementioned investigation, it needs huge amount of work to
solve the potential data loss for all filesystems.  But it is much
easier for in-memory filesystems and such filesystems actually suffer
more than others since even the data blocks are gone due to truncating.
So this patchset starts from shmem/tmpfs by taking option #1.

TODO:
* The unpoison has been broken since commit 0ed950d ("mm,hwpoison: make
  get_hwpoison_page() call get_any_page()"), and this patch series make
  refcount check for unpoisoning shmem page fail.
* Expand to other filesystems.  But I haven't heard feedback from filesystem
  developers yet.

Patch breakdown:
Patch #1: cleanup, depended by patch #2
Patch #2: fix THP with hwpoisoned subpage(s) PMD map bug
Patch #3: coding style cleanup
Patch #4: refactor and preparation.
Patch #5: keep the poisoned page in page cache and handle such case for all
          the paths.
Patch #6: the previous patches unblock page cache THP split, so this patch
          add page cache THP split support.

This patch (of 4):

A minor cleanup to the indent.

Link: https://lkml.kernel.org/r/[email protected]
Link: https://lkml.kernel.org/r/[email protected]
Signed-off-by: Yang Shi <[email protected]>
Reviewed-by: Naoya Horiguchi <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: Kirill A. Shutemov <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Oscar Salvador <[email protected]>
Cc: Peter Xu <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
okias pushed a commit that referenced this pull request Nov 23, 2021
To clear a user buffer we cannot simply use memset, we have to use
clear_user().  With a virtio-mem device that registers a vmcore_cb and
has some logically unplugged memory inside an added Linux memory block,
I can easily trigger a BUG by copying the vmcore via "cp":

  systemd[1]: Starting Kdump Vmcore Save Service...
  kdump[420]: Kdump is using the default log level(3).
  kdump[453]: saving to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/
  kdump[458]: saving vmcore-dmesg.txt to /sysroot/var/crash/127.0.0.1-2021-11-11-14:59:22/
  kdump[465]: saving vmcore-dmesg.txt complete
  kdump[467]: saving vmcore
  BUG: unable to handle page fault for address: 00007f2374e01000
  #PF: supervisor write access in kernel mode
  #PF: error_code(0x0003) - permissions violation
  PGD 7a523067 P4D 7a523067 PUD 7a528067 PMD 7a525067 PTE 800000007048f867
  Oops: 0003 [#1] PREEMPT SMP NOPTI
  CPU: 0 PID: 468 Comm: cp Not tainted 5.15.0+ #6
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-27-g64f37cc530f1-prebuilt.qemu.org 04/01/2014
  RIP: 0010:read_from_oldmem.part.0.cold+0x1d/0x86
  Code: ff ff ff e8 05 ff fe ff e9 b9 e9 7f ff 48 89 de 48 c7 c7 38 3b 60 82 e8 f1 fe fe ff 83 fd 08 72 3c 49 8d 7d 08 4c 89 e9 89 e8 <49> c7 45 00 00 00 00 00 49 c7 44 05 f8 00 00 00 00 48 83 e7 f81
  RSP: 0018:ffffc9000073be08 EFLAGS: 00010212
  RAX: 0000000000001000 RBX: 00000000002fd000 RCX: 00007f2374e01000
  RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00007f2374e01008
  RBP: 0000000000001000 R08: 0000000000000000 R09: ffffc9000073bc50
  R10: ffffc9000073bc48 R11: ffffffff829461a8 R12: 000000000000f000
  R13: 00007f2374e01000 R14: 0000000000000000 R15: ffff88807bd421e8
  FS:  00007f2374e12140(0000) GS:ffff88807f000000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f2374e01000 CR3: 000000007a4aa000 CR4: 0000000000350eb0
  Call Trace:
   read_vmcore+0x236/0x2c0
   proc_reg_read+0x55/0xa0
   vfs_read+0x95/0x190
   ksys_read+0x4f/0xc0
   do_syscall_64+0x3b/0x90
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Some x86-64 CPUs have a CPU feature called "Supervisor Mode Access
Prevention (SMAP)", which is used to detect wrong access from the kernel
to user buffers like this: SMAP triggers a permissions violation on
wrong access.  In the x86-64 variant of clear_user(), SMAP is properly
handled via clac()+stac().

To fix, properly use clear_user() when we're dealing with a user buffer.

Link: https://lkml.kernel.org/r/[email protected]
Fixes: 997c136 ("fs/proc/vmcore.c: add hook to read_from_oldmem() to check for non-ram pages")
Signed-off-by: David Hildenbrand <[email protected]>
Acked-by: Baoquan He <[email protected]>
Cc: Dave Young <[email protected]>
Cc: Baoquan He <[email protected]>
Cc: Vivek Goyal <[email protected]>
Cc: Philipp Rudo <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
okias pushed a commit that referenced this pull request Jul 31, 2023
[ Upstream commit 99d4850 ]

Found by leak sanitizer:
```
==1632594==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 21 byte(s) in 1 object(s) allocated from:
    #0 0x7f2953a7077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439
    #1 0x556701d6fbbf in perf_env__read_cpuid util/env.c:369
    #2 0x556701d70589 in perf_env__cpuid util/env.c:465
    #3 0x55670204bba2 in x86__is_amd_cpu arch/x86/util/env.c:14
    #4 0x5567020487a2 in arch__post_evsel_config arch/x86/util/evsel.c:83
    #5 0x556701d8f78b in evsel__config util/evsel.c:1366
    #6 0x556701ef5872 in evlist__config util/record.c:108
    #7 0x556701cd6bcd in test__PERF_RECORD tests/perf-record.c:112
    #8 0x556701cacd07 in run_test tests/builtin-test.c:236
    grate-driver#9 0x556701cacfac in test_and_print tests/builtin-test.c:265
    grate-driver#10 0x556701cadddb in __cmd_test tests/builtin-test.c:402
    grate-driver#11 0x556701caf2aa in cmd_test tests/builtin-test.c:559
    grate-driver#12 0x556701d3b557 in run_builtin tools/perf/perf.c:323
    grate-driver#13 0x556701d3bac8 in handle_internal_command tools/perf/perf.c:377
    grate-driver#14 0x556701d3be90 in run_argv tools/perf/perf.c:421
    grate-driver#15 0x556701d3c3f8 in main tools/perf/perf.c:537
    grate-driver#16 0x7f2952a46189 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58

SUMMARY: AddressSanitizer: 21 byte(s) leaked in 1 allocation(s).
```

Fixes: f7b58cb ("perf mem/c2c: Add load store event mappings for AMD")
Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Ravi Bangoria <[email protected]>
Tested-by: Arnaldo Carvalho de Melo <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Namhyung Kim <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Ravi Bangoria <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
okias pushed a commit that referenced this pull request Jul 31, 2023
[ Upstream commit b684c09 ]

ppc_save_regs() skips one stack frame while saving the CPU register states.
Instead of saving current R1, it pulls the previous stack frame pointer.

When vmcores caused by direct panic call (such as `echo c >
/proc/sysrq-trigger`), are debugged with gdb, gdb fails to show the
backtrace correctly. On further analysis, it was found that it was because
of mismatch between r1 and NIP.

GDB uses NIP to get current function symbol and uses corresponding debug
info of that function to unwind previous frames, but due to the
mismatching r1 and NIP, the unwinding does not work, and it fails to
unwind to the 2nd frame and hence does not show the backtrace.

GDB backtrace with vmcore of kernel without this patch:

---------
(gdb) bt
 #0  0xc0000000002a53e8 in crash_setup_regs (oldregs=<optimized out>,
    newregs=0xc000000004f8f8d8) at ./arch/powerpc/include/asm/kexec.h:69
 #1  __crash_kexec (regs=<optimized out>) at kernel/kexec_core.c:974
 #2  0x0000000000000063 in ?? ()
 #3  0xc000000003579320 in ?? ()
---------

Further analysis revealed that the mismatch occurred because
"ppc_save_regs" was saving the previous stack's SP instead of the current
r1. This patch fixes this by storing current r1 in the saved pt_regs.

GDB backtrace with vmcore of patched kernel:

--------
(gdb) bt
 #0  0xc0000000002a53e8 in crash_setup_regs (oldregs=0x0, newregs=0xc00000000670b8d8)
    at ./arch/powerpc/include/asm/kexec.h:69
 #1  __crash_kexec (regs=regs@entry=0x0) at kernel/kexec_core.c:974
 #2  0xc000000000168918 in panic (fmt=fmt@entry=0xc000000001654a60 "sysrq triggered crash\n")
    at kernel/panic.c:358
 #3  0xc000000000b735f8 in sysrq_handle_crash (key=<optimized out>) at drivers/tty/sysrq.c:155
 #4  0xc000000000b742cc in __handle_sysrq (key=key@entry=99, check_mask=check_mask@entry=false)
    at drivers/tty/sysrq.c:602
 #5  0xc000000000b7506c in write_sysrq_trigger (file=<optimized out>, buf=<optimized out>,
    count=2, ppos=<optimized out>) at drivers/tty/sysrq.c:1163
 #6  0xc00000000069a7bc in pde_write (ppos=<optimized out>, count=<optimized out>,
    buf=<optimized out>, file=<optimized out>, pde=0xc00000000362cb40) at fs/proc/inode.c:340
 #7  proc_reg_write (file=<optimized out>, buf=<optimized out>, count=<optimized out>,
    ppos=<optimized out>) at fs/proc/inode.c:352
 #8  0xc0000000005b3bbc in vfs_write (file=file@entry=0xc000000006aa6b00,
    buf=buf@entry=0x61f498b4f60 <error: Cannot access memory at address 0x61f498b4f60>,
    count=count@entry=2, pos=pos@entry=0xc00000000670bda0) at fs/read_write.c:582
 grate-driver#9  0xc0000000005b4264 in ksys_write (fd=<optimized out>,
    buf=0x61f498b4f60 <error: Cannot access memory at address 0x61f498b4f60>, count=2)
    at fs/read_write.c:637
 grate-driver#10 0xc00000000002ea2c in system_call_exception (regs=0xc00000000670be80, r0=<optimized out>)
    at arch/powerpc/kernel/syscall.c:171
 grate-driver#11 0xc00000000000c270 in system_call_vectored_common ()
    at arch/powerpc/kernel/interrupt_64.S:192
--------

Nick adds:
  So this now saves regs as though it was an interrupt taken in the
  caller, at the instruction after the call to ppc_save_regs, whereas
  previously the NIP was there, but R1 came from the caller's caller and
  that mismatch is what causes gdb's dwarf unwinder to go haywire.

Signed-off-by: Aditya Gupta <[email protected]>
Fixes: d16a58f ("powerpc: Improve ppc_save_regs()")
Reivewed-by: Nicholas Piggin <[email protected]>
Signed-off-by: Michael Ellerman <[email protected]>
Link: https://msgid.link/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
okias pushed a commit that referenced this pull request Dec 4, 2023
When scanning namespaces, it is possible to get valid data from the first
call to nvme_identify_ns() in nvme_alloc_ns(), but not from the second
call in nvme_update_ns_info_block().  In particular, if the NSID becomes
inactive between the two commands, a storage device may return a buffer
filled with zero as per 4.1.5.1.  In this case, we can get a kernel crash
due to a divide-by-zero in blk_stack_limits() because ns->lba_shift will
be set to zero.

PID: 326      TASK: ffff95fec3cd8000  CPU: 29   COMMAND: "kworker/u98:10"
 #0 [ffffad8f8702f9e0] machine_kexec at ffffffff91c76ec7
 #1 [ffffad8f8702fa38] __crash_kexec at ffffffff91dea4fa
 #2 [ffffad8f8702faf8] crash_kexec at ffffffff91deb788
 #3 [ffffad8f8702fb00] oops_end at ffffffff91c2e4bb
 #4 [ffffad8f8702fb20] do_trap at ffffffff91c2a4ce
 #5 [ffffad8f8702fb70] do_error_trap at ffffffff91c2a595
 #6 [ffffad8f8702fbb0] exc_divide_error at ffffffff928506e6
 #7 [ffffad8f8702fbd0] asm_exc_divide_error at ffffffff92a00926
    [exception RIP: blk_stack_limits+434]
    RIP: ffffffff92191872  RSP: ffffad8f8702fc80  RFLAGS: 00010246
    RAX: 0000000000000000  RBX: ffff95efa0c91800  RCX: 0000000000000001
    RDX: 0000000000000000  RSI: 0000000000000001  RDI: 0000000000000001
    RBP: 00000000ffffffff   R8: ffff95fec7df35a8   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000001  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: ffff95fed33c09a8
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #8 [ffffad8f8702fce0] nvme_update_ns_info_block at ffffffffc06d3533 [nvme_core]
 grate-driver#9 [ffffad8f8702fd18] nvme_scan_ns at ffffffffc06d6fa7 [nvme_core]

This happened when the check for valid data was moved out of nvme_identify_ns()
into one of the callers.  Fix this by checking in both callers.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=218186
Fixes: 0dd6fff ("nvme: bring back auto-removal of deleted namespaces during sequential scan")
Cc: [email protected]
Signed-off-by: Ewan D. Milne <[email protected]>
Signed-off-by: Keith Busch <[email protected]>
okias pushed a commit that referenced this pull request Dec 27, 2023
Andrii Nakryiko says:

====================
Enhance BPF global subprogs with argument tags

This patch set adds verifier support for annotating user's global BPF subprog
arguments with few commonly requested annotations, to improve global subprog
verification experience.

These tags are:
  - ability to annotate a special PTR_TO_CTX argument;
  - ability to annotate a generic PTR_TO_MEM as non-null.

We utilize btf_decl_tag attribute for this and provide two helper macros as
part of bpf_helpers.h in libbpf (patch #8).

Besides this we also add abilit to pass a pointer to dynptr into global
subprog. This is done based on type name match (struct bpf_dynptr *). This
allows to pass dynptrs into global subprogs, for use cases that deal with
variable-sized generic memory pointers.

Big chunk of the patch set (patches #1 through #5) are various refactorings to
make verifier internals around global subprog validation logic easier to
extend and support long term, eliminating BTF parsing logic duplication,
factoring out argument expectation definitions from BTF parsing, etc.

New functionality is added in patch #6 (ctx and non-null) and patch #7
(dynptr), extending global subprog checks with awareness for arg tags.

Patch grate-driver#9 adds simple tests validating each of the added tags and dynptr
argument passing.

Patch grate-driver#10 adds a simple negative case for freplace programs to make sure that
target BPF programs with "unreliable" BTF func proto cannot be freplaced.

v2->v3:
  - patch grate-driver#10 improved by checking expected verifier error (Eduard);
v1->v2:
  - dropped packet args for now (Eduard);
  - added back unreliable=true detection for entry BPF programs (Eduard);
  - improved subprog arg validation (Eduard);
  - switched dynptr arg from tag to just type name based check (Eduard).
====================

Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
okias pushed a commit that referenced this pull request Dec 27, 2023
Ido Schimmel says:

====================
Add MDB bulk deletion support

This patchset adds MDB bulk deletion support, allowing user space to
request the deletion of matching entries instead of dumping the entire
MDB and issuing a separate deletion request for each matching entry.
Support is added in both the bridge and VXLAN drivers in a similar
fashion to the existing FDB bulk deletion support.

The parameters according to which bulk deletion can be performed are
similar to the FDB ones, namely: Destination port, VLAN ID, state (e.g.,
"permanent"), routing protocol, source / destination VNI, destination IP
and UDP port. Flushing based on flags (e.g., "offload", "fast_leave",
"added_by_star_ex", "blocked") is not currently supported, but can be
added in the future, if a use case arises.

Patch #1 adds a new uAPI attribute to allow specifying the state mask
according to which bulk deletion will be performed, if any.

Patch #2 adds a new policy according to which bulk deletion requests
(with 'NLM_F_BULK' flag set) will be parsed.

Patches #3-#4 add a new NDO for MDB bulk deletion and invoke it from the
rtnetlink code when a bulk deletion request is made.

Patches #5-#6 implement the MDB bulk deletion NDO in the bridge and
VXLAN drivers, respectively.

Patch #7 allows user space to issue MDB bulk deletion requests by no
longer rejecting the 'NLM_F_BULK' flag when it is set in 'RTM_DELMDB'
requests.

Patches #8-grate-driver#9 add selftests for both drivers, for both good and bad
flows.

iproute2 changes can be found here [1].

https://github.com/idosch/iproute2/tree/submit/mdb_flush_v1
====================

Signed-off-by: David S. Miller <[email protected]>
okias pushed a commit that referenced this pull request Dec 27, 2023
An issue occurred while reading an ELF file in libbpf.c during fuzzing:

	Program received signal SIGSEGV, Segmentation fault.
	0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206
	4206 in libbpf.c
	(gdb) bt
	#0 0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206
	#1 0x000000000094f9d6 in bpf_object.collect_relos () at libbpf.c:6706
	#2 0x000000000092bef3 in bpf_object_open () at libbpf.c:7437
	#3 0x000000000092c046 in bpf_object.open_mem () at libbpf.c:7497
	#4 0x0000000000924afa in LLVMFuzzerTestOneInput () at fuzz/bpf-object-fuzzer.c:16
	#5 0x000000000060be11 in testblitz_engine::fuzzer::Fuzzer::run_one ()
	#6 0x000000000087ad92 in tracing::span::Span::in_scope ()
	#7 0x00000000006078aa in testblitz_engine::fuzzer::util::walkdir ()
	#8 0x00000000005f3217 in testblitz_engine::entrypoint::main::{{closure}} ()
	grate-driver#9 0x00000000005f2601 in main ()
	(gdb)

scn_data was null at this code(tools/lib/bpf/src/libbpf.c):

	if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {

The scn_data is derived from the code above:

	scn = elf_sec_by_idx(obj, sec_idx);
	scn_data = elf_sec_data(obj, scn);

	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
	sec_name = elf_sec_name(obj, scn);
	if (!relo_sec_name || !sec_name)// don't check whether scn_data is NULL
		return -EINVAL;

In certain special scenarios, such as reading a malformed ELF file,
it is possible that scn_data may be a null pointer

Signed-off-by: Mingyi Zhang <[email protected]>
Signed-off-by: Xin Liu <[email protected]>
Signed-off-by: Changye Wu <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
Signed-off-by: Daniel Borkmann <[email protected]>
Acked-by: Daniel Borkmann <[email protected]>
Link: https://lore.kernel.org/bpf/[email protected]
okias pushed a commit that referenced this pull request Jan 7, 2024
[ Upstream commit a84fbf2 ]

Generating metrics llc_code_read_mpi_demand_plus_prefetch,
llc_data_read_mpi_demand_plus_prefetch,
llc_miss_local_memory_bandwidth_read,
llc_miss_local_memory_bandwidth_write,
nllc_miss_remote_memory_bandwidth_read, memory_bandwidth_read,
memory_bandwidth_write, uncore_frequency, upi_data_transmit_bw,
C2_Pkg_Residency, C3_Core_Residency, C3_Pkg_Residency,
C6_Core_Residency, C6_Pkg_Residency, C7_Core_Residency,
C7_Pkg_Residency, UNCORE_FREQ and tma_info_system_socket_clks would
trigger an address sanitizer heap-buffer-overflows on a SkylakeX.

```
==2567752==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x5020003ed098 at pc 0x5621a816654e bp 0x7fffb55d4da0 sp 0x7fffb55d4d98
READ of size 4 at 0x5020003eee78 thread T0
    #0 0x558265d6654d in aggr_cpu_id__is_empty tools/perf/util/cpumap.c:694:12
    #1 0x558265c914da in perf_stat__get_aggr tools/perf/builtin-stat.c:1490:6
    #2 0x558265c914da in perf_stat__get_global_cached tools/perf/builtin-stat.c:1530:9
    #3 0x558265e53290 in should_skip_zero_counter tools/perf/util/stat-display.c:947:31
    #4 0x558265e53290 in print_counter_aggrdata tools/perf/util/stat-display.c:985:18
    #5 0x558265e51931 in print_counter tools/perf/util/stat-display.c:1110:3
    #6 0x558265e51931 in evlist__print_counters tools/perf/util/stat-display.c:1571:5
    #7 0x558265c8ec87 in print_counters tools/perf/builtin-stat.c:981:2
    #8 0x558265c8cc71 in cmd_stat tools/perf/builtin-stat.c:2837:3
    grate-driver#9 0x558265bb9bd4 in run_builtin tools/perf/perf.c:323:11
    grate-driver#10 0x558265bb98eb in handle_internal_command tools/perf/perf.c:377:8
    grate-driver#11 0x558265bb9389 in run_argv tools/perf/perf.c:421:2
    grate-driver#12 0x558265bb9389 in main tools/perf/perf.c:537:3
```

The issue was the use of testing a cpumap with NULL rather than using
empty, as a map containing the dummy value isn't NULL and the -1
results in an empty aggr map being allocated which legitimately
overflows when any member is accessed.

Fixes: 8a96f45 ("perf stat: Avoid SEGV if core.cpus isn't set")
Signed-off-by: Ian Rogers <[email protected]>
Acked-by: Namhyung Kim <[email protected]>
Cc: Adrian Hunter <[email protected]>
Cc: Alexander Shishkin <[email protected]>
Cc: Ian Rogers <[email protected]>
Cc: Ingo Molnar <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Mark Rutland <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
okias pushed a commit that referenced this pull request Jan 7, 2024
[ Upstream commit ede72dc ]

Fuzzing found that an invalid tracepoint name would create a memory
leak with an address sanitizer build:
```
$ perf stat -e '*:o/' true
event syntax error: '*:o/'
                       \___ parser error
Run 'perf list' for a list of valid events

 Usage: perf stat [<options>] [<command>]

    -e, --event <event>   event selector. use 'perf list' to list available events

=================================================================
==59380==ERROR: LeakSanitizer: detected memory leaks

Direct leak of 4 byte(s) in 2 object(s) allocated from:
    #0 0x7f38ac07077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439
    #1 0x55f2f41be73b in str util/parse-events.l:49
    #2 0x55f2f41d08e8 in parse_events_lex util/parse-events.l:338
    #3 0x55f2f41dc3b1 in parse_events_parse util/parse-events-bison.c:1464
    #4 0x55f2f410b8b3 in parse_events__scanner util/parse-events.c:1822
    #5 0x55f2f410d1b9 in __parse_events util/parse-events.c:2094
    #6 0x55f2f410e57f in parse_events_option util/parse-events.c:2279
    #7 0x55f2f4427b56 in get_value tools/lib/subcmd/parse-options.c:251
    #8 0x55f2f4428d98 in parse_short_opt tools/lib/subcmd/parse-options.c:351
    grate-driver#9 0x55f2f4429d80 in parse_options_step tools/lib/subcmd/parse-options.c:539
    grate-driver#10 0x55f2f442acb9 in parse_options_subcommand tools/lib/subcmd/parse-options.c:654
    grate-driver#11 0x55f2f3ec99fc in cmd_stat tools/perf/builtin-stat.c:2501
    grate-driver#12 0x55f2f4093289 in run_builtin tools/perf/perf.c:322
    grate-driver#13 0x55f2f40937f5 in handle_internal_command tools/perf/perf.c:375
    grate-driver#14 0x55f2f4093bbd in run_argv tools/perf/perf.c:419
    grate-driver#15 0x55f2f409412b in main tools/perf/perf.c:535

SUMMARY: AddressSanitizer: 4 byte(s) leaked in 2 allocation(s).
```
Fix by adding the missing destructor.

Fixes: 865582c ("perf tools: Adds the tracepoint name parsing support")
Signed-off-by: Ian Rogers <[email protected]>
Cc: He Kuang <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Namhyung Kim <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
okias pushed a commit that referenced this pull request Jan 7, 2024
commit d8b90d6 upstream.

When scanning namespaces, it is possible to get valid data from the first
call to nvme_identify_ns() in nvme_alloc_ns(), but not from the second
call in nvme_update_ns_info_block().  In particular, if the NSID becomes
inactive between the two commands, a storage device may return a buffer
filled with zero as per 4.1.5.1.  In this case, we can get a kernel crash
due to a divide-by-zero in blk_stack_limits() because ns->lba_shift will
be set to zero.

PID: 326      TASK: ffff95fec3cd8000  CPU: 29   COMMAND: "kworker/u98:10"
 #0 [ffffad8f8702f9e0] machine_kexec at ffffffff91c76ec7
 #1 [ffffad8f8702fa38] __crash_kexec at ffffffff91dea4fa
 #2 [ffffad8f8702faf8] crash_kexec at ffffffff91deb788
 #3 [ffffad8f8702fb00] oops_end at ffffffff91c2e4bb
 #4 [ffffad8f8702fb20] do_trap at ffffffff91c2a4ce
 #5 [ffffad8f8702fb70] do_error_trap at ffffffff91c2a595
 #6 [ffffad8f8702fbb0] exc_divide_error at ffffffff928506e6
 #7 [ffffad8f8702fbd0] asm_exc_divide_error at ffffffff92a00926
    [exception RIP: blk_stack_limits+434]
    RIP: ffffffff92191872  RSP: ffffad8f8702fc80  RFLAGS: 00010246
    RAX: 0000000000000000  RBX: ffff95efa0c91800  RCX: 0000000000000001
    RDX: 0000000000000000  RSI: 0000000000000001  RDI: 0000000000000001
    RBP: 00000000ffffffff   R8: ffff95fec7df35a8   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000001  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: ffff95fed33c09a8
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #8 [ffffad8f8702fce0] nvme_update_ns_info_block at ffffffffc06d3533 [nvme_core]
 grate-driver#9 [ffffad8f8702fd18] nvme_scan_ns at ffffffffc06d6fa7 [nvme_core]

This happened when the check for valid data was moved out of nvme_identify_ns()
into one of the callers.  Fix this by checking in both callers.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=218186
Fixes: 0dd6fff ("nvme: bring back auto-removal of deleted namespaces during sequential scan")
Cc: [email protected]
Signed-off-by: Ewan D. Milne <[email protected]>
Signed-off-by: Keith Busch <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
okias pushed a commit that referenced this pull request Jan 7, 2024
[ Upstream commit e3e82fc ]

When creating ceq_0 during probing irdma, cqp.sc_cqp will be sent as a
cqp_request to cqp->sc_cqp.sq_ring. If the request is pending when
removing the irdma driver or unplugging its aux device, cqp.sc_cqp will be
dereferenced as wrong struct in irdma_free_pending_cqp_request().

  PID: 3669   TASK: ffff88aef892c000  CPU: 28  COMMAND: "kworker/28:0"
   #0 [fffffe0000549e38] crash_nmi_callback at ffffffff810e3a34
   #1 [fffffe0000549e40] nmi_handle at ffffffff810788b2
   #2 [fffffe0000549ea0] default_do_nmi at ffffffff8107938f
   #3 [fffffe0000549eb8] do_nmi at ffffffff81079582
   #4 [fffffe0000549ef0] end_repeat_nmi at ffffffff82e016b4
      [exception RIP: native_queued_spin_lock_slowpath+1291]
      RIP: ffffffff8127e72b  RSP: ffff88aa841ef778  RFLAGS: 00000046
      RAX: 0000000000000000  RBX: ffff88b01f849700  RCX: ffffffff8127e47e
      RDX: 0000000000000000  RSI: 0000000000000004  RDI: ffffffff83857ec0
      RBP: ffff88afe3e4efc8   R8: ffffed15fc7c9dfa   R9: ffffed15fc7c9dfa
      R10: 0000000000000001  R11: ffffed15fc7c9df9  R12: 0000000000740000
      R13: ffff88b01f849708  R14: 0000000000000003  R15: ffffed1603f092e1
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0000
  -- <NMI exception stack> --
   #5 [ffff88aa841ef778] native_queued_spin_lock_slowpath at ffffffff8127e72b
   #6 [ffff88aa841ef7b0] _raw_spin_lock_irqsave at ffffffff82c22aa4
   #7 [ffff88aa841ef7c8] __wake_up_common_lock at ffffffff81257363
   #8 [ffff88aa841ef888] irdma_free_pending_cqp_request at ffffffffa0ba12cc [irdma]
   grate-driver#9 [ffff88aa841ef958] irdma_cleanup_pending_cqp_op at ffffffffa0ba1469 [irdma]
   grate-driver#10 [ffff88aa841ef9c0] irdma_ctrl_deinit_hw at ffffffffa0b2989f [irdma]
   grate-driver#11 [ffff88aa841efa28] irdma_remove at ffffffffa0b252df [irdma]
   grate-driver#12 [ffff88aa841efae8] auxiliary_bus_remove at ffffffff8219afdb
   grate-driver#13 [ffff88aa841efb00] device_release_driver_internal at ffffffff821882e6
   grate-driver#14 [ffff88aa841efb38] bus_remove_device at ffffffff82184278
   grate-driver#15 [ffff88aa841efb88] device_del at ffffffff82179d23
   grate-driver#16 [ffff88aa841efc48] ice_unplug_aux_dev at ffffffffa0eb1c14 [ice]
   grate-driver#17 [ffff88aa841efc68] ice_service_task at ffffffffa0d88201 [ice]
   grate-driver#18 [ffff88aa841efde8] process_one_work at ffffffff811c589a
   grate-driver#19 [ffff88aa841efe60] worker_thread at ffffffff811c71ff
   grate-driver#20 [ffff88aa841eff10] kthread at ffffffff811d87a0
   grate-driver#21 [ffff88aa841eff50] ret_from_fork at ffffffff82e0022f

Fixes: 44d9e52 ("RDMA/irdma: Implement device initialization definitions")
Link: https://lore.kernel.org/r/[email protected]
Suggested-by: "Ismail, Mustafa" <[email protected]>
Signed-off-by: Shifeng Li <[email protected]>
Reviewed-by: Shiraz Saleem <[email protected]>
Signed-off-by: Jason Gunthorpe <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
okias pushed a commit that referenced this pull request Jan 7, 2024
commit fe2b122 upstream.

When working on LED support for r8169 I got the following lockdep
warning. Easiest way to prevent this scenario seems to be to take
the RTNL lock before the trigger_data lock in set_device_name().

======================================================
WARNING: possible circular locking dependency detected
6.7.0-rc2-next-20231124+ #2 Not tainted
------------------------------------------------------
bash/383 is trying to acquire lock:
ffff888103aa1c68 (&trigger_data->lock){+.+.}-{3:3}, at: netdev_trig_notify+0xec/0x190 [ledtrig_netdev]

but task is already holding lock:
ffffffff8cddf808 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_lock+0x12/0x20

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (rtnl_mutex){+.+.}-{3:3}:
       __mutex_lock+0x9b/0xb50
       mutex_lock_nested+0x16/0x20
       rtnl_lock+0x12/0x20
       set_device_name+0xa9/0x120 [ledtrig_netdev]
       netdev_trig_activate+0x1a1/0x230 [ledtrig_netdev]
       led_trigger_set+0x172/0x2c0
       led_trigger_write+0xf1/0x140
       sysfs_kf_bin_write+0x5d/0x80
       kernfs_fop_write_iter+0x15d/0x210
       vfs_write+0x1f0/0x510
       ksys_write+0x6c/0xf0
       __x64_sys_write+0x14/0x20
       do_syscall_64+0x3f/0xf0
       entry_SYSCALL_64_after_hwframe+0x6c/0x74

-> #0 (&trigger_data->lock){+.+.}-{3:3}:
       __lock_acquire+0x1459/0x25a0
       lock_acquire+0xc8/0x2d0
       __mutex_lock+0x9b/0xb50
       mutex_lock_nested+0x16/0x20
       netdev_trig_notify+0xec/0x190 [ledtrig_netdev]
       call_netdevice_register_net_notifiers+0x5a/0x100
       register_netdevice_notifier+0x85/0x120
       netdev_trig_activate+0x1d4/0x230 [ledtrig_netdev]
       led_trigger_set+0x172/0x2c0
       led_trigger_write+0xf1/0x140
       sysfs_kf_bin_write+0x5d/0x80
       kernfs_fop_write_iter+0x15d/0x210
       vfs_write+0x1f0/0x510
       ksys_write+0x6c/0xf0
       __x64_sys_write+0x14/0x20
       do_syscall_64+0x3f/0xf0
       entry_SYSCALL_64_after_hwframe+0x6c/0x74

other info that might help us debug this:

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(rtnl_mutex);
                               lock(&trigger_data->lock);
                               lock(rtnl_mutex);
  lock(&trigger_data->lock);

 *** DEADLOCK ***

8 locks held by bash/383:
 #0: ffff888103ff33f0 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x6c/0xf0
 #1: ffff888103aa1e88 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x114/0x210
 #2: ffff8881036f1890 (kn->active#82){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x11d/0x210
 #3: ffff888108e2c358 (&led_cdev->led_access){+.+.}-{3:3}, at: led_trigger_write+0x30/0x140
 #4: ffffffff8cdd9e10 (triggers_list_lock){++++}-{3:3}, at: led_trigger_write+0x75/0x140
 #5: ffff888108e2c270 (&led_cdev->trigger_lock){++++}-{3:3}, at: led_trigger_write+0xe3/0x140
 #6: ffffffff8cdde3d0 (pernet_ops_rwsem){++++}-{3:3}, at: register_netdevice_notifier+0x1c/0x120
 #7: ffffffff8cddf808 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_lock+0x12/0x20

stack backtrace:
CPU: 0 PID: 383 Comm: bash Not tainted 6.7.0-rc2-next-20231124+ #2
Hardware name: Default string Default string/Default string, BIOS ADLN.M6.SODIMM.ZB.CY.015 08/08/2023
Call Trace:
 <TASK>
 dump_stack_lvl+0x5c/0xd0
 dump_stack+0x10/0x20
 print_circular_bug+0x2dd/0x410
 check_noncircular+0x131/0x150
 __lock_acquire+0x1459/0x25a0
 lock_acquire+0xc8/0x2d0
 ? netdev_trig_notify+0xec/0x190 [ledtrig_netdev]
 __mutex_lock+0x9b/0xb50
 ? netdev_trig_notify+0xec/0x190 [ledtrig_netdev]
 ? __this_cpu_preempt_check+0x13/0x20
 ? netdev_trig_notify+0xec/0x190 [ledtrig_netdev]
 ? __cancel_work_timer+0x11c/0x1b0
 ? __mutex_lock+0x123/0xb50
 mutex_lock_nested+0x16/0x20
 ? mutex_lock_nested+0x16/0x20
 netdev_trig_notify+0xec/0x190 [ledtrig_netdev]
 call_netdevice_register_net_notifiers+0x5a/0x100
 register_netdevice_notifier+0x85/0x120
 netdev_trig_activate+0x1d4/0x230 [ledtrig_netdev]
 led_trigger_set+0x172/0x2c0
 ? preempt_count_add+0x49/0xc0
 led_trigger_write+0xf1/0x140
 sysfs_kf_bin_write+0x5d/0x80
 kernfs_fop_write_iter+0x15d/0x210
 vfs_write+0x1f0/0x510
 ksys_write+0x6c/0xf0
 __x64_sys_write+0x14/0x20
 do_syscall_64+0x3f/0xf0
 entry_SYSCALL_64_after_hwframe+0x6c/0x74
RIP: 0033:0x7f269055d034
Code: c7 00 16 00 00 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 80 3d 35 c3 0d 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 48 89 54 24 18 48
RSP: 002b:00007ffddb7ef748 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000007 RCX: 00007f269055d034
RDX: 0000000000000007 RSI: 000055bf5f4af3c0 RDI: 0000000000000001
RBP: 000055bf5f4af3c0 R08: 0000000000000073 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000007
R13: 00007f26906325c0 R14: 00007f269062ff20 R15: 0000000000000000
 </TASK>

Fixes: d5e0126 ("leds: trigger: netdev: add additional specific link speed mode")
Cc: [email protected]
Signed-off-by: Heiner Kallweit <[email protected]>
Reviewed-by: Andrew Lunn <[email protected]>
Acked-by: Lee Jones <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
okias pushed a commit that referenced this pull request Jan 11, 2024
…te_call_indirect

kprobe_emulate_call_indirect currently uses int3_emulate_call to emulate
indirect calls. However, int3_emulate_call always assumes the size of
the call to be 5 bytes when calculating the return address. This is
incorrect for register-based indirect calls in x86, which can be either
2 or 3 bytes depending on whether REX prefix is used. At kprobe runtime,
the incorrect return address causes control flow to land onto the wrong
place after return -- possibly not a valid instruction boundary. This
can lead to a panic like the following:

[    7.308204][    C1] BUG: unable to handle page fault for address: 000000000002b4d8
[    7.308883][    C1] #PF: supervisor read access in kernel mode
[    7.309168][    C1] #PF: error_code(0x0000) - not-present page
[    7.309461][    C1] PGD 0 P4D 0
[    7.309652][    C1] Oops: 0000 [#1] SMP
[    7.309929][    C1] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.7.0-rc5-trace-for-next #6
[    7.310397][    C1] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[    7.311068][    C1] RIP: 0010:__common_interrupt+0x52/0xc0
[    7.311349][    C1] Code: 01 00 4d 85 f6 74 39 49 81 fe 00 f0 ff ff 77 30 4c 89 f7 4d 8b 5e 68 41 ba 91 76 d8 42 45 03 53 fc 74 02 0f 0b cc ff d3 65 48 <8b> 05 30 c7 ff 7e 65 4c 89 3d 28 c7 ff 7e 5b 41 5c 41 5e 41 5f c3
[    7.312512][    C1] RSP: 0018:ffffc900000e0fd0 EFLAGS: 00010046
[    7.312899][    C1] RAX: 0000000000000001 RBX: 0000000000000023 RCX: 0000000000000001
[    7.313334][    C1] RDX: 00000000000003cd RSI: 0000000000000001 RDI: ffff888100d302a4
[    7.313702][    C1] RBP: 0000000000000001 R08: 0ef439818636191f R09: b1621ff338a3b482
[    7.314146][    C1] R10: ffffffff81e5127b R11: ffffffff81059810 R12: 0000000000000023
[    7.314509][    C1] R13: 0000000000000000 R14: ffff888100d30200 R15: 0000000000000000
[    7.314951][    C1] FS:  0000000000000000(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000
[    7.315396][    C1] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    7.315691][    C1] CR2: 000000000002b4d8 CR3: 0000000003028003 CR4: 0000000000370ef0
[    7.316153][    C1] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[    7.316508][    C1] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[    7.316948][    C1] Call Trace:
[    7.317123][    C1]  <IRQ>
[    7.317279][    C1]  ? __die_body+0x64/0xb0
[    7.317482][    C1]  ? page_fault_oops+0x248/0x370
[    7.317712][    C1]  ? __wake_up+0x96/0xb0
[    7.317964][    C1]  ? exc_page_fault+0x62/0x130
[    7.318211][    C1]  ? asm_exc_page_fault+0x22/0x30
[    7.318444][    C1]  ? __cfi_native_send_call_func_single_ipi+0x10/0x10
[    7.318860][    C1]  ? default_idle+0xb/0x10
[    7.319063][    C1]  ? __common_interrupt+0x52/0xc0
[    7.319330][    C1]  common_interrupt+0x78/0x90
[    7.319546][    C1]  </IRQ>
[    7.319679][    C1]  <TASK>
[    7.319854][    C1]  asm_common_interrupt+0x22/0x40
[    7.320082][    C1] RIP: 0010:default_idle+0xb/0x10
[    7.320309][    C1] Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 b8 0c 67 40 a5 66 90 0f 00 2d 09 b9 3b 00 fb f4 <fa> c3 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 b8 0c 67 40 a5 e9
[    7.321449][    C1] RSP: 0018:ffffc9000009bee8 EFLAGS: 00000256
[    7.321808][    C1] RAX: ffff88813bca8b68 RBX: 0000000000000001 RCX: 000000000001ef0c
[    7.322227][    C1] RDX: 0000000000000000 RSI: 0000000000000001 RDI: 000000000001ef0c
[    7.322656][    C1] RBP: ffffc9000009bef8 R08: 8000000000000000 R09: 00000000000008c2
[    7.323083][    C1] R10: 0000000000000000 R11: ffffffff81058e70 R12: 0000000000000000
[    7.323530][    C1] R13: ffff8881002b30c0 R14: 0000000000000000 R15: 0000000000000000
[    7.323948][    C1]  ? __cfi_lapic_next_deadline+0x10/0x10
[    7.324239][    C1]  default_idle_call+0x31/0x50
[    7.324464][    C1]  do_idle+0xd3/0x240
[    7.324690][    C1]  cpu_startup_entry+0x25/0x30
[    7.324983][    C1]  start_secondary+0xb4/0xc0
[    7.325217][    C1]  secondary_startup_64_no_verify+0x179/0x17b
[    7.325498][    C1]  </TASK>
[    7.325641][    C1] Modules linked in:
[    7.325906][    C1] CR2: 000000000002b4d8
[    7.326104][    C1] ---[ end trace 0000000000000000 ]---
[    7.326354][    C1] RIP: 0010:__common_interrupt+0x52/0xc0
[    7.326614][    C1] Code: 01 00 4d 85 f6 74 39 49 81 fe 00 f0 ff ff 77 30 4c 89 f7 4d 8b 5e 68 41 ba 91 76 d8 42 45 03 53 fc 74 02 0f 0b cc ff d3 65 48 <8b> 05 30 c7 ff 7e 65 4c 89 3d 28 c7 ff 7e 5b 41 5c 41 5e 41 5f c3
[    7.327570][    C1] RSP: 0018:ffffc900000e0fd0 EFLAGS: 00010046
[    7.327910][    C1] RAX: 0000000000000001 RBX: 0000000000000023 RCX: 0000000000000001
[    7.328273][    C1] RDX: 00000000000003cd RSI: 0000000000000001 RDI: ffff888100d302a4
[    7.328632][    C1] RBP: 0000000000000001 R08: 0ef439818636191f R09: b1621ff338a3b482
[    7.329223][    C1] R10: ffffffff81e5127b R11: ffffffff81059810 R12: 0000000000000023
[    7.329780][    C1] R13: 0000000000000000 R14: ffff888100d30200 R15: 0000000000000000
[    7.330193][    C1] FS:  0000000000000000(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000
[    7.330632][    C1] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    7.331050][    C1] CR2: 000000000002b4d8 CR3: 0000000003028003 CR4: 0000000000370ef0
[    7.331454][    C1] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[    7.331854][    C1] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[    7.332236][    C1] Kernel panic - not syncing: Fatal exception in interrupt
[    7.332730][    C1] Kernel Offset: disabled
[    7.333044][    C1] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]---

The relevant assembly code is (from objdump, faulting address
highlighted):

ffffffff8102ed9d:       41 ff d3                  call   *%r11
ffffffff8102eda0:       65 48 <8b> 05 30 c7 ff    mov    %gs:0x7effc730(%rip),%rax

The emulation incorrectly sets the return address to be ffffffff8102ed9d
+ 0x5 = ffffffff8102eda2, which is the 8b byte in the middle of the next
mov. This in turn causes incorrect subsequent instruction decoding and
eventually triggers the page fault above.

Instead of invoking int3_emulate_call, perform push and jmp emulation
directly in kprobe_emulate_call_indirect. At this point we can obtain
the instruction size from p->ainsn.size so that we can calculate the
correct return address.

Link: https://lore.kernel.org/all/[email protected]/

Fixes: 6256e66 ("x86/kprobes: Use int3 instead of debug trap for single-step")
Cc: [email protected]
Signed-off-by: Jinghao Jia <[email protected]>
Signed-off-by: Masami Hiramatsu (Google) <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants