Skip to content

Commit

Permalink
chore: bump (v4.14.0-rc2) (#182)
Browse files Browse the repository at this point in the history
- [x] Remove `_root_.ENNReal.inv_div` since upstreamed to Mathlib
leanprover-community/mathlib4#18704
- [x] Remove `Int.floor_le_iff` since upstreamed to Mathlib
leanprover-community/mathlib4#18552
- [x] Remove `dense_iff_iUnion_ball` since upstreamed to Mathlib
leanprover-community/mathlib4#19294
- [x] Remove `dist_eq_of_dist_zero` since upstreamed to Mathlib
leanprover-community/mathlib4#19294
- [x] Remove `IsTop.isMax_iff` since upstreamed to Mathlib
leanprover-community/mathlib4#19305
- [x] Remove `Int.Icc_of_eq_sub_one` since upstreamed to Mathlib
leanprover-community/mathlib4#19308

---------

Co-authored-by: grunweg <[email protected]>
  • Loading branch information
pitmonticone and grunweg authored Nov 21, 2024
1 parent 6bc609c commit 0ba357e
Show file tree
Hide file tree
Showing 14 changed files with 78 additions and 150 deletions.
2 changes: 1 addition & 1 deletion Carleson/Antichain/AntichainOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -486,7 +486,7 @@ lemma Dens2Antichain {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (·≤·) (
apply Nat.le_mul_of_pos_right _
rw [tsub_pos_iff_lt]
exact lt_of_lt_of_le (by linarith)
(Nat.mul_le_mul_left 4 (pow_le_pow_left zero_le_four ha 2))
(Nat.mul_le_mul_left 4 (pow_le_pow_left zero_le_four ha 2))
_ = 4 * a ^ 3 - 2 * a := by
rw [Nat.mul_sub]
ring_nf
Expand Down
2 changes: 1 addition & 1 deletion Carleson/Classical/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,7 @@ lemma lower_secant_bound {η : ℝ} {x : ℝ} (xIcc : x ∈ Set.Icc (-2 * π +
rw [mul_assoc]
gcongr
field_simp
rw [div_le_div_iff (by norm_num) pi_pos]
rw [div_le_div_iff (by norm_num) pi_pos]
linarith [pi_le_four]
_ ≤ ‖1 - Complex.exp (Complex.I * x)‖ := by
apply lower_secant_bound' xAbs
Expand Down
2 changes: 1 addition & 1 deletion Carleson/Classical/VanDerCorput.lean
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,7 @@ lemma van_der_Corput {a b : ℝ} (hab : a ≤ b) {n : ℤ} {ϕ : ℝ → ℂ} {B
linarith
_ ≤ (2 * π / (1 + n * (b - a)) * (b - a)) * (B + K * (b - a) / 2) := by
gcongr
rw [mul_comm, ← mul_div_assoc, div_le_div_iff (by simpa)]
rw [mul_comm, ← mul_div_assoc, div_le_div_iff (by simpa)]
· calc π * (1 + n * (b - a))
_ ≤ π * (π + n * (b - a)) := by
gcongr
Expand Down
2 changes: 1 addition & 1 deletion Carleson/Discrete/ForestUnion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -400,7 +400,7 @@ lemma forest_separation (hu : u ∈ 𝔘₃ k n j) (hu' : u' ∈ 𝔘₃ k n j)
have Cidpos : 0 < (C2_1_2 a)⁻¹ ^ d := by rw [C2_1_2]; positivity
calc
_ ≤ (C2_1_2 a)⁻¹ ^ (Z * (n + 1)) := by
refine pow_le_pow_left zero_le_two ?_ _
refine pow_le_pow_left zero_le_two ?_ _
nth_rw 1 [C2_1_2, ← Real.inv_rpow zero_le_two, ← Real.rpow_neg_one,
← Real.rpow_mul zero_le_two, neg_one_mul, neg_mul, neg_neg, ← Real.rpow_one 2]
apply Real.rpow_le_rpow_of_exponent_le one_le_two
Expand Down
2 changes: 1 addition & 1 deletion Carleson/ForestOperator/LargeSeparation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,7 @@ lemma scales_impacting_interval (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu :
apply Grid_subset_ball (X := X) (i := 𝓘 p)
exact xInTile
_ < 100 * ↑D ^ (s J + 1) := by
apply (div_lt_div_right zero_lt_four).mp
apply (div_lt_div_iff_of_pos_right zero_lt_four).mp
ring_nf
rewrite (config := {occs := .pos [1]}) [add_comm]
apply lt_tsub_iff_left.mp
Expand Down
6 changes: 5 additions & 1 deletion Carleson/ForestOperator/RemainingTiles.lean
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,11 @@ lemma square_function_count (hJ : J ∈ 𝓙₆ t u₁) (s' : ℤ) :
· rw [show (8 : ℝ≥0) = 2 ^ 3 by norm_num]
simp only [defaultD, Nat.cast_pow, Nat.cast_ofNat, defaultA,
← zpow_neg, ← zpow_natCast, ← zpow_mul, ← zpow_add₀ (show (2 : ℝ≥0) ≠ 0 by norm_num)]
gcongr
-- #adaptation note(2024-11-02): this line was `gcongr`
-- This was probably broken by mathlib4#19626 and friends, see
-- https://leanprover.zulipchat.com/#narrow/channel/428973-nightly-testing/topic/.2319314.20adaptations.20for.20nightly-2024-11-20
-- for details.
refine zpow_le_zpow_right₀ ?ha ?hmn
· norm_num
· simp only [Nat.cast_mul, Nat.cast_ofNat, Nat.cast_pow, mul_neg,
le_add_neg_iff_add_le, ← mul_add]
Expand Down
8 changes: 4 additions & 4 deletions Carleson/HardyLittlewood.lean
Original file line number Diff line number Diff line change
Expand Up @@ -232,18 +232,18 @@ theorem Set.Countable.measure_biUnion_le_lintegral [OpensMeasurableSpace X] (h
hB (Subtype.coe_prop i) (Subtype.coe_prop j) (Subtype.coe_ne_coe.mpr hij)
calc
l * μ (⋃ i ∈ 𝓑, ball (c i) (r i)) ≤ l * μ (⋃ i ∈ B, ball (c i) (2 ^ 2 * r i)) := by
refine l.mul_left_mono (μ.mono fun x hx ↦ ?_)
refine mul_left_mono (μ.mono fun x hx ↦ ?_)
simp only [mem_iUnion, mem_ball, exists_prop] at hx
rcases hx with ⟨i, i𝓑, hi⟩
obtain ⟨b, bB, hb⟩ := h2B i i𝓑
refine mem_iUnion₂.mpr ⟨b, bB, hb <| mem_ball.mpr hi⟩
_ ≤ l * ∑' i : B, μ (ball (c i) (2 ^ 2 * r i)) :=
l.mul_left_mono <| measure_biUnion_le μ (h𝓑.mono hB𝓑) fun i ↦ ball (c i) (2 ^ 2 * r i)
mul_left_mono <| measure_biUnion_le μ (h𝓑.mono hB𝓑) fun i ↦ ball (c i) (2 ^ 2 * r i)
_ ≤ l * ∑' i : B, A ^ 2 * μ (ball (c i) (r i)) := by
refine l.mul_left_mono <| ENNReal.tsum_le_tsum (fun i ↦ ?_)
refine mul_left_mono <| ENNReal.tsum_le_tsum (fun i ↦ ?_)
rw [sq, sq, mul_assoc, mul_assoc]
apply (measure_ball_two_le_same (c i) (2 * r i)).trans
exact ENNReal.mul_left_mono (measure_ball_two_le_same (c i) (r i))
exact mul_left_mono (measure_ball_two_le_same (c i) (r i))
_ = A ^ 2 * ∑' i : B, l * μ (ball (c i) (r i)) := by
rw [ENNReal.tsum_mul_left, ENNReal.tsum_mul_left, ← mul_assoc, ← mul_assoc, mul_comm l]
_ ≤ A ^ 2 * ∑' i : B, ∫⁻ x in ball (c i) (r i), u x ∂μ := by
Expand Down
15 changes: 9 additions & 6 deletions Carleson/Psi.lean
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,10 @@ private lemma sum_ψ₂ (hx : 0 < x)
have endpts := endpoint_sub_one hD hx h
have ne : ⌈logb D (4 * x)⌉ - 1 ≠ ⌈logb D (4 * x)⌉ := pred_ne_self _
have : nonzeroS D x = {⌈logb D (4 * x)⌉ - 1, ⌈logb D (4 * x)⌉} := by
rw [nonzeroS, ← endpts]; exact Int.Icc_of_eq_sub_1 endpts
rw [nonzeroS, ← endpts]
have Icc_of_eq_add_one {a b : ℤ} (h : a + 1 = b) : Finset.Icc a b = {a, b} := by
subst h; exact Int.Icc_eq_pair a
exact Icc_of_eq_add_one (add_eq_of_eq_sub endpts)
set s₀ := ⌈logb D (4 * x)⌉
rw [this, Finset.sum_insert ((Finset.not_mem_singleton).2 ne), Finset.sum_singleton]
-- Now calculate the sum
Expand Down Expand Up @@ -259,7 +262,7 @@ lemma mem_nonzeroS_iff {i : ℤ} {x : ℝ} (hx : 0 < x) :
i ∈ nonzeroS D x ↔ (D ^ (-i) * x) ∈ Ioo (4 * D : ℝ)⁻¹ 2⁻¹ := by
rw [mem_Ioo, nonzeroS, Finset.mem_Icc, Int.floor_le_iff, Int.le_ceil_iff, mul_inv_rev,
add_comm _ 1, Real.add_lt_add_iff_left, ← lt_div_iff₀ hx, mul_comm (D : ℝ)⁻¹,
← div_lt_div_iff hx (inv_pos.2 (D0 hD)), div_inv_eq_mul, ← zpow_add_one₀ ((D0 hD).ne.symm),
← div_lt_div_iff hx (inv_pos.2 (D0 hD)), div_inv_eq_mul, ← zpow_add_one₀ ((D0 hD).ne.symm),
zpow_neg, ← Real.rpow_intCast, ← Real.rpow_intCast, lt_logb_iff_rpow_lt hD (four_x0 hx),
logb_lt_iff_lt_rpow hD (mul_pos two_pos hx), ← sub_eq_neg_add, ← neg_sub i 1, ← inv_mul',
← inv_mul', inv_lt_inv₀ (D_pow0 hD _) (mul_pos two_pos hx), Int.cast_neg, Int.cast_sub,
Expand Down Expand Up @@ -406,10 +409,10 @@ private lemma div_vol_le {x y : X} {c : ℝ} (hc : c > 0) (hK : Ks s x y ≠ 0)
have v0₂ := measure_ball_pos_nnreal x (D ^ (s - 1) / 4) (by have := D0' X; positivity)
have v0₃ := measure_ball_pos_real x (D ^ s) (zpow_pos (D0' X) _)
have ball_subset := ball_subset_ball (x := x) (mem_Icc.1 (dist_mem_Icc_of_Ks_ne_zero hK)).1
apply le_trans <| (div_le_div_left hc v0₁ v0₂).2 <|
apply le_trans <| (div_le_div_iff_of_pos_left hc v0₁ v0₂).2 <|
ENNReal.toNNReal_mono (measure_ball_ne_top x _) (OuterMeasureClass.measure_mono _ ball_subset)
dsimp only
rw_mod_cast [measureNNReal_val, div_le_div_iff (by exact_mod_cast v0₂) v0₃]
rw_mod_cast [measureNNReal_val, div_le_div_iff (by exact_mod_cast v0₂) v0₃]
apply le_of_le_of_eq <| (mul_le_mul_left hc).2 <|
DoublingMeasure.volume_ball_two_le_same_repeat' s x
simp_rw [defaultA, ← mul_assoc, mul_comm c]
Expand Down Expand Up @@ -599,11 +602,11 @@ private lemma norm_Ks_sub_Ks_le₁ {s : ℤ} {x y y' : X} (hK : Ks s x y ≠ 0)
apply le_trans <| norm_sub_le (Ks s x y) (Ks s x y')
apply le_trans <| add_le_add norm_Ks_le norm_Ks_le
rw [div_mul_eq_mul_div, div_add_div_same, ← two_mul,
div_le_div_right (measure_ball_pos_real x (D ^ s) (D_pow0' (D1 X) s)), ← pow_one 2]
div_le_div_iff_of_pos_right (measure_ball_pos_real x (D ^ s) (D_pow0' (D1 X) s)), ← pow_one 2]
rw [not_le, ← div_lt_iff₀' two_pos] at h
have dist_pos : dist y y' > 0 := lt_of_le_of_lt (div_nonneg dist_nonneg two_pos.le) h
have := lt_of_le_of_lt
((div_le_div_right two_pos).2 ((mem_Icc.1 <| dist_mem_Icc_of_Ks_ne_zero hK).1)) h
((div_le_div_iff_of_pos_right two_pos).2 ((mem_Icc.1 <| dist_mem_Icc_of_Ks_ne_zero hK).1)) h
rw [div_div, (show (4 : ℝ) * 2 = 8 by norm_num), zpow_sub₀ (D0' X).ne.symm, div_div, zpow_one,
div_lt_comm₀ (by positivity) dist_pos] at this
have dist_div_Ds_gt := inv_strictAnti₀ (div_pos (Ds0 X s) dist_pos) this
Expand Down
Loading

0 comments on commit 0ba357e

Please sign in to comment.