Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: mark optional hyperparameters as keyword only #296

Merged
merged 2 commits into from
May 6, 2023

Conversation

lars-reimann
Copy link
Member

Closes #278.

Summary of Changes

  • Mark optional hyperparameters as keyword-only
  • Add guideline to consider marking optional parameters as keyword-only

@lars-reimann lars-reimann linked an issue May 6, 2023 that may be closed by this pull request
@lars-reimann lars-reimann changed the title feat: mark optional parameters as keyword only feat: mark optional hyperparameters as keyword only May 6, 2023
@codecov
Copy link

codecov bot commented May 6, 2023

Codecov Report

Merging #296 (5582d24) into main (a91172c) will not change coverage.
The diff coverage is 100.00%.

@@            Coverage Diff            @@
##              main      #296   +/-   ##
=========================================
  Coverage   100.00%   100.00%           
=========================================
  Files           43        43           
  Lines         1704      1704           
=========================================
  Hits          1704      1704           
Impacted Files Coverage Δ
...c/safeds/ml/classical/classification/_ada_boost.py 100.00% <ø> (ø)
src/safeds/ml/classical/regression/_ada_boost.py 100.00% <ø> (ø)
.../ml/classical/classification/_gradient_boosting.py 100.00% <100.00%> (ø)
...feds/ml/classical/classification/_random_forest.py 100.00% <100.00%> (ø)
...lassical/classification/_support_vector_machine.py 100.00% <100.00%> (ø)
...ml/classical/regression/_elastic_net_regression.py 100.00% <100.00%> (ø)
...feds/ml/classical/regression/_gradient_boosting.py 100.00% <100.00%> (ø)
...afeds/ml/classical/regression/_lasso_regression.py 100.00% <100.00%> (ø)
...c/safeds/ml/classical/regression/_random_forest.py 100.00% <100.00%> (ø)
...afeds/ml/classical/regression/_ridge_regression.py 100.00% <100.00%> (ø)
... and 1 more

@lars-reimann lars-reimann marked this pull request as ready for review May 6, 2023 18:30
@lars-reimann lars-reimann requested a review from a team as a code owner May 6, 2023 18:30
@lars-reimann
Copy link
Member Author

🦙 MegaLinter status: ✅ SUCCESS

Descriptor Linter Files Fixed Errors Elapsed time
✅ MARKDOWN markdown-link-check 1 0 0.92s
✅ PYTHON black 11 0 0 0.7s
✅ PYTHON mypy 11 0 1.69s
✅ PYTHON ruff 11 0 0 0.04s
✅ REPOSITORY git_diff yes no 0.03s

See detailed report in MegaLinter reports
Set VALIDATE_ALL_CODEBASE: true in mega-linter.yml to validate all sources, not only the diff

MegaLinter is graciously provided by OX Security

@lars-reimann lars-reimann merged commit 44a41eb into main May 6, 2023
@lars-reimann lars-reimann deleted the 278-mark-optional-parameters-as-keyword-only branch May 6, 2023 18:32
lars-reimann pushed a commit that referenced this pull request May 11, 2023
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11)

### Features

* add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167)
* add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163)
* add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166)
* Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161)
* Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239)
* Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157)
* Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110)
* Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164)
* Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255)
* Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111)
* Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169)
* Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173)
* Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170)
* Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146)
* convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151)
* Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139)
* convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140)
* make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943))
* mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278)
* move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262)
* precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185)
* Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192)
* recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186)
* replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171)
* set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165)
* Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179)
* set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168)
* Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154)
* usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266)
* usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293)

### Bug Fixes

* OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201)
* selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
@lars-reimann
Copy link
Member Author

🎉 This PR is included in version 0.12.0 🎉

The release is available on:

Your semantic-release bot 📦🚀

@lars-reimann lars-reimann added the released Included in a release label May 11, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
released Included in a release
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Mark optional parameters as keyword-only
1 participant