Skip to content

Commit

Permalink
feat: Added Table.transform_table method which returns the transfor…
Browse files Browse the repository at this point in the history
…med Table (#229)

Closes #110.

### Summary of Changes

Added `Table.transform_table` Method which returns a Table transformed
with the given `TableTransformer`

Co-authored-by: Marsmaennchen221
<[email protected]>

---------

Co-authored-by: megalinter-bot <[email protected]>
Co-authored-by: Alexander Gréus <[email protected]>
Co-authored-by: Lars Reimann <[email protected]>
  • Loading branch information
4 people authored Apr 21, 2023
1 parent 846bf23 commit 0a9ce72
Show file tree
Hide file tree
Showing 3 changed files with 157 additions and 3 deletions.
38 changes: 36 additions & 2 deletions src/safeds/data/tabular/containers/_table.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
if TYPE_CHECKING:
from collections.abc import Callable, Iterable

from safeds.data.tabular.transformation import InvertibleTableTransformer
from safeds.data.tabular.transformation import InvertibleTableTransformer, TableTransformer

from ._tagged_table import TaggedTable

Expand Down Expand Up @@ -993,6 +993,40 @@ def transform_column(self, name: str, transformer: Callable[[Row], Any]) -> Tabl
return self.replace_column(name, result)
raise UnknownColumnNameError([name])

def transform_table(self, transformer: TableTransformer) -> Table:
"""
Apply a learned transformation onto this table.
Parameters
----------
transformer : TableTransformer
The transformer which transforms the given table.
Returns
-------
transformed_table : Table
The transformed table.
Raises
------
TransformerNotFittedError
If the transformer has not been fitted yet.
Examples
--------
>>> from safeds.data.tabular.transformation import OneHotEncoder
>>> from safeds.data.tabular.containers import Table
>>> transformer = OneHotEncoder()
>>> table = Table.from_dict({"col1": [1, 2, 1], "col2": [1, 2, 4]})
>>> transformer = transformer.fit(table, None)
>>> table.transform_table(transformer)
col1_1 col1_2 col2_1 col2_2 col2_4
0 1.0 0.0 1.0 0.0 0.0
1 0.0 1.0 0.0 1.0 0.0
2 1.0 0.0 0.0 0.0 1.0
"""
return transformer.transform(self)

def inverse_transform_table(self, transformer: InvertibleTableTransformer) -> Table:
"""
Invert the transformation applied by the given transformer.
Expand All @@ -1005,7 +1039,7 @@ def inverse_transform_table(self, transformer: InvertibleTableTransformer) -> Ta
Returns
-------
table : Table
The original table
The original table.
Raises
------
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from safeds.data.tabular.transformation import OneHotEncoder


class TestInverseTransformTableOnOneHotEncoder:
class TestInverseTransformTable:
@pytest.mark.parametrize(
("table_to_fit", "column_names", "table_to_transform"),
[
Expand Down
120 changes: 120 additions & 0 deletions tests/safeds/data/tabular/containers/_table/test_transform_table.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
import pytest
from safeds.data.tabular.containers import Table
from safeds.data.tabular.exceptions import TransformerNotFittedError, UnknownColumnNameError
from safeds.data.tabular.transformation import OneHotEncoder


class TestTransform:
@pytest.mark.parametrize(
("table", "column_names", "expected"),
[
(
Table.from_dict(
{
"col1": ["a", "b", "b", "c"],
},
),
None,
Table.from_dict(
{
"col1_a": [1.0, 0.0, 0.0, 0.0],
"col1_b": [0.0, 1.0, 1.0, 0.0],
"col1_c": [0.0, 0.0, 0.0, 1.0],
},
),
),
(
Table.from_dict(
{
"col1": ["a", "b", "b", "c"],
"col2": ["a", "b", "b", "c"],
},
),
["col1"],
Table.from_dict(
{
"col1_a": [1.0, 0.0, 0.0, 0.0],
"col1_b": [0.0, 1.0, 1.0, 0.0],
"col1_c": [0.0, 0.0, 0.0, 1.0],
"col2": ["a", "b", "b", "c"],
},
),
),
(
Table.from_dict(
{
"col1": ["a", "b", "b", "c"],
"col2": ["a", "b", "b", "c"],
},
),
["col1", "col2"],
Table.from_dict(
{
"col1_a": [1.0, 0.0, 0.0, 0.0],
"col1_b": [0.0, 1.0, 1.0, 0.0],
"col1_c": [0.0, 0.0, 0.0, 1.0],
"col2_a": [1.0, 0.0, 0.0, 0.0],
"col2_b": [0.0, 1.0, 1.0, 0.0],
"col2_c": [0.0, 0.0, 0.0, 1.0],
},
),
),
],
ids=["all columns", "one column", "multiple columns"],
)
def test_should_return_transformed_table(
self,
table: Table,
column_names: list[str] | None,
expected: Table,
) -> None:
transformer = OneHotEncoder().fit(table, column_names)
assert table.transform_table(transformer) == expected

def test_should_not_change_original_table(self) -> None:
table = Table.from_dict(
{
"col1": ["a", "b", "c"],
},
)

transformer = OneHotEncoder().fit(table, None)
table.transform_table(transformer)

expected = Table.from_dict(
{
"col1": ["a", "b", "c"],
},
)

assert table == expected

def test_should_raise_if_column_not_found(self) -> None:
table_to_fit = Table.from_dict(
{
"col1": ["a", "b", "c"],
},
)

transformer = OneHotEncoder().fit(table_to_fit, None)

table_to_transform = Table.from_dict(
{
"col2": ["a", "b", "c"],
},
)

with pytest.raises(UnknownColumnNameError):
table_to_transform.transform_table(transformer)

def test_should_raise_if_not_fitted(self) -> None:
table = Table.from_dict(
{
"col1": ["a", "b", "c"],
},
)

transformer = OneHotEncoder()

with pytest.raises(TransformerNotFittedError):
table.transform_table(transformer)

0 comments on commit 0a9ce72

Please sign in to comment.