-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Set learning rate of AdaBoost
#167
Labels
enhancement 💡
New feature or request
good first issue
Good for newcomers
released
Included in a release
Comments
lars-reimann
added a commit
that referenced
this issue
Apr 28, 2023
Closes #167. Adds learning_rate parameter to AdaBoost classifier and regressor. <!-- Please provide a summary of changes in this pull request, ensuring all changes are explained. --> --------- Co-authored-by: Lars Reimann <[email protected]>
lars-reimann
pushed a commit
that referenced
this issue
May 11, 2023
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11) ### Features * add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167) * add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163) * add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166) * Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161) * Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239) * Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157) * Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110) * Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164) * Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255) * Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111) * Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169) * Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173) * Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170) * Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146) * convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151) * Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139) * convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140) * make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943)) * mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278) * move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262) * precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185) * Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192) * recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186) * replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171) * set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165) * Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179) * set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168) * Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154) * usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266) * usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293) ### Bug Fixes * OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201) * selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
🎉 This issue has been resolved in version 0.12.0 🎉 The release is available on:
Your semantic-release bot 📦🚀 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
enhancement 💡
New feature or request
good first issue
Good for newcomers
released
Included in a release
Is your feature request related to a problem?
It's not possible to set the learning rate of adaptive boosting.
Desired solution
learning_rate: float
to the initializer ofsafeds.ml.classification.AdaBoost
andsafeds.ml.regression.AdaBoost
learning_rate
<= 0learning_rate
of the wrappedscikit-learn
model in thefit
methodPossible alternatives (optional)
No response
Screenshots (optional)
No response
Additional Context (optional)
No response
The text was updated successfully, but these errors were encountered: