This repository contains an official pytorch implementation for the following paper
Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017).
Original implementation: slimming in Torch.
The code is based on pytorch-slimming. I add support for ResNet and DenseNet.
Citation:
@InProceedings{Liu_2017_ICCV,
author = {jiweiLiu},
title = {Learning Efficient Convolutional Networks Through Network Slimming},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2020}
}
torch V1.6, torchvision V0.7
I introduce channel selection
layer to help the pruning of ResNet and DenseNet. This layer is easy to implement. It stores a parameter indexes
which is initialized to an all-1 vector. During pruning, it will set some places to 0 which correspond to the pruned channels.
The dataset
argument specifies which dataset to use: cifar10
or cifar100
. The arch
argument specifies the architecture to use: vgg
,resnet
or
densenet
. The depth is chosen to be the same as the networks used in the paper.The filename is used to specify the name of the selected file to be saved
python main.py --dataset cifar10 --arch vgg --depth 19 --filename vgg
python main.py --dataset cifar10 --arch resnet --depth 20 --filename resnet
python main.py --dataset cifar10 --arch densenet --depth 40 --filename densenet
python main.py -sr -amp_loss --s 0.0001 --dataset cifar10 --arch vgg --depth 19 --filename vgg
python main.py -sr -amp_loss --s 0.00001 --dataset cifar10 --arch resnet --depth 20 --filename resnet
python main.py -sr -amp_loss --s 0.00001 --dataset cifar10 --arch densenet --depth 40 --filename densenet
python vggprune.py --dataset cifar10 --depth 19 --percent 0.7 --model [PATH TO THE MODEL] --filename [DIRECTORY TO STORE RESULT]
python resprune.py --dataset cifar10 --depth 20 --percent 0.6 --model [PATH TO THE MODEL] --filename [DIRECTORY TO STORE RESULT]
python denseprune.py --dataset cifar10 --depth 40 --percent 0.6 --model [PATH TO THE MODEL] --filename [DIRECTORY TO STORE RESULT]
python main.py -amp_loss --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 19 --epochs 160 --filename pruned_vgg
python main.py -amp_loss --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 20 --epochs 160 --filename pruned_resnet
python main.py -amp_loss --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch densenet --depth 40 --epochs 160 --filename pruned_densenet
The results are fairly close to the original paper, whose results are produced by Torch. Note that due to different random seeds, there might be up to ~0.5%/1.5% fluctation on CIFAR-10/100 datasets in different runs, according to our experiences.
CIFAR10-Vgg | Baseline | Sparsity (1e-4) | Prune (70%) | Fine-tune-160(70%) |
---|---|---|---|---|
Top1 Accuracy (%) | 93.77 | 93.30 | 32.54 | 93.78 |
Parameters | 20.04M | 20.04M | 2.25M | 2.25M |
CIFAR10-Resnet-164 | Baseline | Sparsity (1e-5) | Prune(40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 95.75 | 94.76 | 94.58 | 95.05 | 47.73 | 93.81 |
Parameters | 1.71M | 1.73M | 1.45M | 1.45M | 1.12M | 1.12M |
CIFAR10-Densenet-40 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 94.11 | 94.17 | 94.16 | 94.32 | 89.46 | 94.22 |
Parameters | 1.07M | 1.07M | 0.69M | 0.69M | 0.49M | 0.49M |
CIFAR100-Vgg | Baseline | Sparsity (1e-4) | Prune (50%) | Fine-tune-160(50%) |
---|---|---|---|---|
Top1 Accuracy (%) | 74.12 | 73.05 | 5.31 | 73.32 |
Parameters | 20.04M | 20.04M | 4.93M | 4.93M |
CIFAR100-Resnet-164 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 76.79 | 76.87 | 48.0 | 77.36 | --- | --- |
Parameters | 1.73M | 1.73M | 1.49M | 1.49M | --- | --- |