Skip to content

Network reproduction and expansion based on Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017).

Notifications You must be signed in to change notification settings

Culturenotes/Network-Slimming

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Network Slimming (Pytorch)

This repository contains an official pytorch implementation for the following paper
Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017).
Original implementation: slimming in Torch.
The code is based on pytorch-slimming. I add support for ResNet and DenseNet.

Citation:

@InProceedings{Liu_2017_ICCV,
    author = {jiweiLiu},
    title = {Learning Efficient Convolutional Networks Through Network Slimming},
    booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
    month = {Oct},
    year = {2020}
}

Dependencies

torch V1.6, torchvision V0.7

Channel Selection Layer

I introduce channel selection layer to help the pruning of ResNet and DenseNet. This layer is easy to implement. It stores a parameter indexes which is initialized to an all-1 vector. During pruning, it will set some places to 0 which correspond to the pruned channels.

Baseline

The dataset argument specifies which dataset to use: cifar10 or cifar100. The arch argument specifies the architecture to use: vgg,resnet or densenet. The depth is chosen to be the same as the networks used in the paper.The filename is used to specify the name of the selected file to be saved

python main.py --dataset cifar10 --arch vgg --depth 19 --filename vgg
python main.py --dataset cifar10 --arch resnet --depth 20 --filename resnet
python main.py --dataset cifar10 --arch densenet --depth 40 --filename densenet

Train with Sparsity and Using apex mixed precision training

python main.py -sr -amp_loss --s 0.0001 --dataset cifar10 --arch vgg --depth 19 --filename vgg
python main.py -sr -amp_loss --s 0.00001 --dataset cifar10 --arch resnet --depth 20 --filename resnet
python main.py -sr -amp_loss --s 0.00001 --dataset cifar10 --arch densenet --depth 40 --filename densenet

Prune

python vggprune.py --dataset cifar10 --depth 19 --percent 0.7 --model [PATH TO THE MODEL] --filename [DIRECTORY TO STORE RESULT]
python resprune.py --dataset cifar10 --depth 20 --percent 0.6 --model [PATH TO THE MODEL] --filename [DIRECTORY TO STORE RESULT]
python denseprune.py --dataset cifar10 --depth 40 --percent 0.6 --model [PATH TO THE MODEL] --filename [DIRECTORY TO STORE RESULT]

Fine-tune

python main.py -amp_loss --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 19 --epochs 160 --filename pruned_vgg

python main.py -amp_loss --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch resnet --depth 20 --epochs 160 --filename pruned_resnet

python main.py -amp_loss --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch densenet --depth 40 --epochs 160 --filename pruned_densenet

Results

The results are fairly close to the original paper, whose results are produced by Torch. Note that due to different random seeds, there might be up to ~0.5%/1.5% fluctation on CIFAR-10/100 datasets in different runs, according to our experiences.

CIFAR10

CIFAR10-Vgg Baseline Sparsity (1e-4) Prune (70%) Fine-tune-160(70%)
Top1 Accuracy (%) 93.77 93.30 32.54 93.78
Parameters 20.04M 20.04M 2.25M 2.25M
CIFAR10-Resnet-164 Baseline Sparsity (1e-5) Prune(40%) Fine-tune-160(40%) Prune(60%) Fine-tune-160(60%)
Top1 Accuracy (%) 95.75 94.76 94.58 95.05 47.73 93.81
Parameters 1.71M 1.73M 1.45M 1.45M 1.12M 1.12M
CIFAR10-Densenet-40 Baseline Sparsity (1e-5) Prune (40%) Fine-tune-160(40%) Prune(60%) Fine-tune-160(60%)
Top1 Accuracy (%) 94.11 94.17 94.16 94.32 89.46 94.22
Parameters 1.07M 1.07M 0.69M 0.69M 0.49M 0.49M

CIFAR100

CIFAR100-Vgg Baseline Sparsity (1e-4) Prune (50%) Fine-tune-160(50%)
Top1 Accuracy (%) 74.12 73.05 5.31 73.32
Parameters 20.04M 20.04M 4.93M 4.93M
CIFAR100-Resnet-164 Baseline Sparsity (1e-5) Prune (40%) Fine-tune-160(40%) Prune(60%) Fine-tune-160(60%)
Top1 Accuracy (%) 76.79 76.87 48.0 77.36 --- ---
Parameters 1.73M 1.73M 1.49M 1.49M --- ---

Contact

[email protected]

About

Network reproduction and expansion based on Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages