-
Notifications
You must be signed in to change notification settings - Fork 3
/
resprune.py
218 lines (187 loc) · 8.68 KB
/
resprune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import argparse
from torchvision import datasets, transforms
from models import *
# Prune settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR prune')
parser.add_argument('--dataset', type=str, default='cifar10',
help='training dataset (default: cifar10)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--depth', type=int, default=20,
help='depth of the resnet')
parser.add_argument('--percent', type=float, default=0.45,
help='scale sparse rate (default: 0.6)')
parser.add_argument('--model', default='', type=str, metavar='PATH',
help='path to the model (default: none)')
parser.add_argument('--save', default='./logs/', type=str, metavar='PATH',
help='path to save pruned model (default: ./logs/)')
parser.add_argument('--filename', default='', type=str, metavar='PATH',
help='path to save pruned model (default: none)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not os.path.exists(args.save):
os.makedirs(args.save)
model = resnet(depth=args.depth, dataset=args.dataset)
if args.cuda:
model.cuda()
if args.model:
args.model = args.save + args.model + ".pth"
if os.path.isfile(args.model):
print("=> loading checkpoint '{}'".format(args.model))
checkpoint = torch.load(args.model)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.model, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
total = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
total += m.weight.data.shape[0]
bn = torch.zeros(total)
index = 0
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
size = m.weight.data.shape[0]
bn[index:(index+size)] = m.weight.data.abs().clone()
index += size
y, i = torch.sort(bn)
thre_index = int(total * args.percent)
thre = y[thre_index]
pruned = 0
cfg = []
cfg_mask = []
for k, m in enumerate(model.modules()):
if isinstance(m, nn.BatchNorm2d):
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(thre).float().cuda()
pruned = pruned + mask.shape[0] - torch.sum(mask)
m.weight.data.mul_(mask)
m.bias.data.mul_(mask)
cfg.append(int(torch.sum(mask)))
cfg_mask.append(mask.clone())
print('layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'.
format(k, mask.shape[0], int(torch.sum(mask))))
elif isinstance(m, nn.MaxPool2d):
cfg.append('M')
pruned_ratio = pruned/total
print('Pre-processing Successful!')
# simple test model after Pre-processing prune (simple set BN scales to zeros)
def test(model):
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
if args.dataset == 'cifar10':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
elif args.dataset == 'cifar100':
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
else:
raise ValueError("No valid dataset is given.")
model.eval()
with torch.no_grad():
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = data,target
output = model(data)
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
print('\nTest set: Accuracy: {}/{} ({:.1f}%)\n'.format(
correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
return correct / float(len(test_loader.dataset))
acc = test(model)
print("Cfg:")
print(cfg)
newmodel = resnet(depth=args.depth, dataset=args.dataset, cfg=cfg)
if args.cuda:
newmodel.cuda()
num_parameters = sum([param.nelement() for param in newmodel.parameters()])
savepath = os.path.join(args.save, args.filename+".txt")
with open(savepath, "w") as fp:
fp.write("Configuration: \n"+str(cfg)+"\n")
fp.write("Number of parameters: \n"+str(num_parameters)+"\n")
fp.write("Test accuracy: \n"+str(acc))
old_modules = list(model.modules())
new_modules = list(newmodel.modules())
layer_id_in_cfg = 0
start_mask = torch.ones(3)
end_mask = cfg_mask[layer_id_in_cfg]
conv_count = 0
for layer_id in range(len(old_modules)):
m0 = old_modules[layer_id]
m1 = new_modules[layer_id]
if isinstance(m0, nn.BatchNorm2d):
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
if idx1.size == 1:
idx1 = np.resize(idx1,(1,))
if isinstance(old_modules[layer_id + 1], channel_selection):
# If the next layer is the channel selection layer, then the current batchnorm 2d layer won't be pruned.
m1.weight.data = m0.weight.data.clone()
m1.bias.data = m0.bias.data.clone()
m1.running_mean = m0.running_mean.clone()
m1.running_var = m0.running_var.clone()
# We need to set the channel selection layer.
m2 = new_modules[layer_id + 1]
m2.indexes.data.zero_()
m2.indexes.data[idx1.tolist()] = 1.0
layer_id_in_cfg += 1
start_mask = end_mask.clone()
if layer_id_in_cfg < len(cfg_mask):
end_mask = cfg_mask[layer_id_in_cfg]
else:
m1.weight.data = m0.weight.data[idx1.tolist()].clone()
m1.bias.data = m0.bias.data[idx1.tolist()].clone()
m1.running_mean = m0.running_mean[idx1.tolist()].clone()
m1.running_var = m0.running_var[idx1.tolist()].clone()
layer_id_in_cfg += 1
start_mask = end_mask.clone()
if layer_id_in_cfg < len(cfg_mask): # do not change in Final FC
end_mask = cfg_mask[layer_id_in_cfg]
elif isinstance(m0, nn.Conv2d):
if conv_count == 0:
m1.weight.data = m0.weight.data.clone()
conv_count += 1
continue
if isinstance(old_modules[layer_id-1], channel_selection) or isinstance(old_modules[layer_id-1], nn.BatchNorm2d):
# This convers the convolutions in the residual block.
# The convolutions are either after the channel selection layer or after the batch normalization layer.
conv_count += 1
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
print('In shape: {:d}, Out shape {:d}.'.format(idx0.size, idx1.size))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
if idx1.size == 1:
idx1 = np.resize(idx1, (1,))
w1 = m0.weight.data[:, idx0.tolist(), :, :].clone()
# If the current convolution is not the last convolution in the residual block, then we can change the
# number of output channels. Currently we use `conv_count` to detect whether it is such convolution.
if conv_count % 3 != 1:
w1 = w1[idx1.tolist(), :, :, :].clone()
m1.weight.data = w1.clone()
continue
# We need to consider the case where there are downsampling convolutions.
# For these convolutions, we just copy the weights.
m1.weight.data = m0.weight.data.clone()
elif isinstance(m0, nn.Linear):
idx0 = np.squeeze(np.argwhere(np.asarray(start_mask.cpu().numpy())))
if idx0.size == 1:
idx0 = np.resize(idx0, (1,))
m1.weight.data = m0.weight.data[:, idx0].clone()
m1.bias.data = m0.bias.data.clone()
torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save, args.filename + '.pth'))
print(newmodel)
model = newmodel
test(model)