-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
249 lines (217 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import print_function
import os
import json
import argparse
import shutil
import torch
import torch.nn as nn
import models
import math
from apex import amp
from models.RanGer import Ranger
from models.Label_SmoothCELoss import LabelSmoothCELoss
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
dict={}
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training')
#parser.add_argument('--mode', type=str, required=True, choices=['train', 'prune', 'test'])
parser.add_argument('--dataset', type=str, default='cifar10',
help='training dataset (default: cifar10)')
parser.add_argument('--sparsity-regularization', '-sr', dest='sr', action='store_true',
help='train with channel sparsity regularization')
parser.add_argument('--using-amp_loss', '-amp_loss', dest='amp_loss', action='store_true',
help='using amp_loss mix f16 and f32')
parser.add_argument('--s', type=float, default=1e-5,
help='scale sparse rate (default: 0.0001)')
parser.add_argument('--lr', type=float, default=1e-2,
help='learning rate (default: 0.010)')
parser.add_argument('--refine', default='', type=str, metavar='PATH',
help='path to the pruned model to be fine tuned')
parser.add_argument('--batch-size', type=int, default=32, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=32, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--log-interval', type=int, default=40, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--arch', default='resnet', type=str,
help='architecture to use')
parser.add_argument('--depth', default=20, type=int,
help='depth of the neural network')
parser.add_argument('--warm_up_epochs', default=5, type=int,
help='warm_up_epochs of the neural network')
parser.add_argument('--save', default='./logs/',
help='checkpoint__save')
parser.add_argument('--filename', default='',
help='filename__save')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if not os.path.exists(args.save):
os.makedirs(args.save)
kwargs = {'num_workers': 0, 'pin_memory': True} if args.cuda else {}
transform = [
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45),
transforms.RandomGrayscale(p=0.3),
transforms.ColorJitter(brightness=1,contrast=1,saturation=0.5,hue=0.5),]
if args.dataset == 'cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomChoice(transform),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
else:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('/data', train=True, download=False,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100('/data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
if args.refine:
args.refine = args.save + args.refine + '.pth'
checkpoint = torch.load(args.refine)
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth, cfg=checkpoint['cfg'])
model.load_state_dict(checkpoint['state_dict'])
else:
model = models.__dict__[args.arch](dataset=args.dataset, depth=args.depth)
if args.cuda:
model.cuda()
#优化器
optimizer = Ranger(model.parameters(),lr=args.lr) # 设置学习方法
warm_up_with_cosine_lr = lambda epoch: ((epoch+1) / args.warm_up_epochs) if (epoch+1) <= args.warm_up_epochs else 0.5 * (
math.cos((epoch - args.warm_up_epochs) / (args.epochs - args.warm_up_epochs) * math.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=warm_up_with_cosine_lr)
#使用amp的量化训练
if args.amp_loss:
model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {}) Prec1: {:f}"
.format(args.resume, checkpoint['epoch'], best_prec1))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# additional subgradient descent on the sparsity-induced penalty term
def updateBN():
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.weight.grad.data.add_(args.s*torch.sign(m.weight.data)) # L1
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = data,target
optimizer.zero_grad()
output = model(data)
criterion = LabelSmoothCELoss().cuda()
loss = criterion(output, target)
if args.amp_loss:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.sr:
updateBN()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
scheduler.step()
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
def test(model):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = data, target
output = model(data)
criterion = LabelSmoothCELoss().cuda()
test_loss += criterion(output, target).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.1f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return correct / float(len(test_loader.dataset))
def save_checkpoint(state, is_best,filename,model_best):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, model_best)
def start():
best_prec1 = 0.
for epoch in range(0, args.epochs):
for param_group in optimizer.param_groups:
print(param_group['lr'])
lrr.append(param_group['lr'])
train(epoch)
prec1 = test(model)
#保存最优的模型参数
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, os.path.join(args.save, args.filename+'.pth'),
os.path.join(args.save, args.filename+'_best.pth'))
#这里只是保存网络的机构和通道数的配置,不包括权重参数。
if epoch == 1:
with open(os.path.join(args.save, args.filename+'.json'), 'w') as file_obj:
for param_tensor in model.state_dict():
#print(param_tensor, "\t", model.state_dict()[param_tensor].size())
dict[param_tensor] = model.state_dict()[param_tensor].size()
# dict = dict(dict)
json.dump(dict, file_obj)
print("Best accuracy: "+str(best_prec1))
if __name__ =="__main__":
lrr=[]
start()
m = [x for x in range(args.epochs)]
plt.plot(m,lrr)
plt.savefig("cc.png")
plt.show()