Skip to content

3D NAS for Pulmonary Nodules Classification, PR 2021

License

Notifications You must be signed in to change notification settings

AiArt-Gao/NAS-Lung

 
 

Repository files navigation

NAS-Lung

3D Neural Architecture Search (NAS) for Pulmonary Nodules Classification

Hanliang Jiang, Fuhao Shen, Fei Gao*, Weidong Han. Learning Efficient, Explainable and Discriminative Representations for Pulmonary Nodules Classification. Pattern Recognition, 113: 107825, 2021.

@article{Jiang2021naslung,
author = {Hanliang Jiang and Fuhao Shen and Fei Gao and Weidong Han},
title = {Learning efficient, explainable and discriminative representations for pulmonary nodules classification},
journal = {Pattern Recognition},
volume = {113},
pages = {107825},
year = {2021},
issn = {0031-3203},
doi = {https://doi.org/10.1016/j.patcog.2021.107825},
}

[Paper@PR] [Paper@arxiv] [Code@Github]

Architecture

Architecture

Results

NASLung

model Accu. Sens. Spec. F1 Score para.(M)
Multi-crop CNN 87.14 - - - -
Nodule-level 2D CNN 87.30 88.50 86.00 87.23 -
Vanilla 3D CNN 87.40 89.40 85.20 87.25 -
DeepLung 90.44 81.42 - - 141.57
AE-DPN 90.24 92.04 88.94 90.45 678.69
NASLung (ours) 90.77 85.37 95.04 89.29 16.84

Searched 3D Networks

Model Accu. Sens. Spec. F1 Score para.
Model-1 88.83 87.20 90.12 87.50 0.14
Model-2 88.42 84.38 91.46 86.67 2.61
Model-3 88.17 84.44 91.60 86.50 3.90
Model-4 88.13 83.20 92.28 86.30 2.54
Model-5 87.97 83.72 91.31 86.22 0.43
Model-6 87.77 83.67 91.00 86.03 0.22
Model-7 87.76 84.14 89.79 85.98 0.86
Model-8 88.00 82.43 92.69 85.97 4.02
Model-9 88.04 78.01 96.09 85.36 4.06
Model-10 87.22 82.70 90.92 85.32 0.24

Prerequisites

  • Linux or similar environment
  • Python 3.7
  • Pytorch 0.4.1
  • NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Clone this repo:

    git clone https://github.com/fei-hdu/NAS-Lung
    cd NAS-Lung
  • Install PyTorch 0.4+ and torchvision from Pytorch and other dependencies (e.g., visdom and dominate). You can install all the dependencies by

    pip install -r requirments.txt
  • Download Dataset LIDC-IDRI

Neural Architecture Search

python search_main.py --train_data_path {train_data_path}  --test_data_path {test_data_path} --save_module_path {save_module_path}

Train/Test

  • Train a model

    sh run_training.sh
  • Test a model

    python test.py --test_data_path {test_data_path} --preprocess_path {preprocess_path} --model_path {model_path}

DataSet

Model Result

Training/Test Tips

  • Best practice for training and testing your models.
  • Feel free to ask any questions about coding. Fuhao Shen, [email protected]

Acknowledgement

Selected References

  • S. Armato III, G. et al., Data from LIDC-IDRI, The Cancer Imaging . LIDC-IDRI.
  • X. Li, Y. Zhou, Z. Pan, J. Feng, Partial order pruning: For best speed/accuracy trade-off in neural architecture search (2019) 9145–9153.
  • S. Woo, J. Park, J.-Y. Lee, I. So Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3–19.
  • W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  • T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey, Journal of Machine Learning Research 20 (55) (2019) 1–21.
  • W. Zhu, C. Liu, W. Fan, X. Xie, Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification, in: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018, pp. 673–681.

About

3D NAS for Pulmonary Nodules Classification, PR 2021

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 58.3%
  • Jupyter Notebook 41.6%
  • Shell 0.1%