forked from fei-aiart/NAS-Lung
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_forest.py
211 lines (189 loc) · 8.41 KB
/
random_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import numpy as np
import os
import transforms as transforms
import pandas as pd
from dataloader import lunanod
from torch.autograd import Variable
from itertools import combinations, permutations
import logging
import pandas as pd
def load_data(fold, batch_size, num_workers):
test_data_path = '/data/xxx/LUNA/rowfile/subset'
crop_size = 32
black_list = []
preprocess_path = '/data/xxx/LUNA/cls/crop_v3'
pix_value, npix = 0, 0
for file_name in os.listdir(preprocess_path):
if file_name.endswith('.npy'):
if file_name[:-4] in black_list:
continue
data = np.load(os.path.join(preprocess_path, file_name))
pix_value += np.sum(data)
npix += np.prod(data.shape)
pix_mean = pix_value / float(npix)
pix_value = 0
for file_name in os.listdir(preprocess_path):
if file_name.endswith('.npy'):
if file_name[:-4] in black_list: continue
data = np.load(os.path.join(preprocess_path, file_name)) - pix_mean
pix_value += np.sum(data * data)
pix_std = np.sqrt(pix_value / float(npix))
print(pix_mean, pix_std)
transform_train = transforms.Compose([
# transforms.RandomScale(range(28, 38)),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomYFlip(),
transforms.RandomZFlip(),
transforms.ZeroOut(4),
transforms.ToTensor(),
transforms.Normalize((pix_mean), (pix_std)), # need to cal mean and std, revise norm func
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((pix_mean), (pix_std)),
])
# load data list
test_file_name_list = []
test_label_list = []
test_feat_list = []
data_frame = pd.read_csv('./data/annotationdetclsconvfnl_v3.csv',
names=['seriesuid', 'coordX', 'coordY', 'coordZ', 'diameter_mm', 'malignant'])
all_list = data_frame['seriesuid'].tolist()[1:]
label_list = data_frame['malignant'].tolist()[1:]
crdx_list = data_frame['coordX'].tolist()[1:]
crdy_list = data_frame['coordY'].tolist()[1:]
crdz_list = data_frame['coordZ'].tolist()[1:]
dim_list = data_frame['diameter_mm'].tolist()[1:]
# test id
test_id_list = []
for file_name in os.listdir(test_data_path + str(fold) + '/'):
if file_name.endswith('.mhd'):
test_id_list.append(file_name[:-4])
mxx = mxy = mxz = mxd = 0
for srsid, label, x, y, z, d in zip(all_list, label_list, crdx_list, crdy_list, crdz_list, dim_list):
mxx = max(abs(float(x)), mxx)
mxy = max(abs(float(y)), mxy)
mxz = max(abs(float(z)), mxz)
mxd = max(abs(float(d)), mxd)
if srsid in black_list:
continue
# crop raw pixel as feature
data = np.load(os.path.join(preprocess_path, srsid + '.npy'))
bgx = int(data.shape[0] / 2 - crop_size / 2)
bgy = int(data.shape[1] / 2 - crop_size / 2)
bgz = int(data.shape[2] / 2 - crop_size / 2)
data = np.array(data[bgx:bgx + crop_size, bgy:bgy + crop_size, bgz:bgz + crop_size])
y, x, z = np.ogrid[-crop_size / 2:crop_size / 2, -crop_size / 2:crop_size / 2, -crop_size / 2:crop_size / 2]
mask = abs(y ** 3 + x ** 3 + z ** 3) <= abs(float(d)) ** 3
feat = np.zeros((crop_size, crop_size, crop_size), dtype=float)
feat[mask] = 1
if srsid.split('-')[0] in test_id_list:
test_file_name_list.append(srsid + '.npy')
test_label_list.append(int(label))
test_feat_list.append(feat)
for idx in range(len(test_feat_list)):
test_feat_list[idx][-1] /= mxd
test_set = lunanod(preprocess_path, test_file_name_list, test_label_list, test_feat_list, train=False,
download=True,
transform=transform_test)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return test_loader
def load_module(module_config, set_num):
path = f'/data/fuhao/PartialOrderPrunning/{module_config}/checkpoint-{set_num}/ckpt.t7'
checkpoint = torch.load(path)
net = checkpoint['net']
net.cuda()
return net
def get_targets(test_loader):
target_list = np.empty(shape=0)
for batch_idx, (inputs, targets, feat) in enumerate(test_loader):
target_list = np.append(target_list, targets)
target_list = target_list.astype(int)
return target_list
def get_permutations(model_list, count, top_count):
result = []
for i in permutations(model_list, count):
result.append(list(i))
if result.__len__() >= top_count:
return result
return result
def test_module(module_config, set_num, test_loader):
module = load_module(module_config, set_num)
module.eval()
result = np.empty(shape=0)
for batch_idx, (inputs, targets, feat) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, requires_grad=False), Variable(targets)
outputs = module(inputs)
if not isinstance(outputs, tuple):
_, predicted = torch.max(outputs.data, 1)
else:
_, predicted = torch.max(outputs[0].data, 1)
result = np.append(result, predicted)
return result
def get_predicted(result_array):
positive_array = result_array == 1
negative_array = result_array == 0
positive_count = np.sum(positive_array, axis=0)
negative_count = np.sum(negative_array, axis=0)
predicted = positive_count > negative_count
return predicted.astype(int)
if __name__ == '__main__':
run_result = np.empty(shape=(0, 20))
top_count = 20
module_list = np.load('data/model.npy')
module_list = list(filter(lambda x: '[32,64,[' in x, module_list))
logging.basicConfig(filename='modelfusion_huge_log', level=logging.INFO)
save_excel = 'modelfusion_huge'
for i in range(3, 20):
if i % 2 == 1:
permutations_result = get_permutations(module_list[:i + 4], i, top_count)
num = 0
for modules in permutations_result:
num += 1
logging.info(f'model_count={i}')
print(f'model_count={i}')
logging.info(f'num:{num}')
print(f'num:{num}')
logging.info(modules)
print(modules)
line = []
for fold in range(6):
test_loader = load_data(fold, 8, 20)
targets = get_targets(test_loader)
length = targets.shape[0]
all_result = np.empty(shape=(0, length))
for module_config in modules:
result = test_module(module_config, fold, test_loader)
all_result = np.append(all_result, [result], axis=0)
predicted = get_predicted(all_result)
TP = np.sum((predicted == 1) & (targets == 1))
TN = np.sum((predicted == 0) & (targets == 0))
FN = np.sum((predicted == 0) & (targets == 1))
FP = np.sum((predicted == 1) & (targets == 0))
tpr = 100. * TP / (TP + FN)
fpr = 100. * FP / (FP + TN)
acc = 100. * np.sum(predicted == targets) / length
line.append(acc)
line.append(tpr)
line.append(fpr)
logging.info(f'set={fold}')
print(f'set={fold}')
logging.info(f'acc={acc}')
print(f'acc={acc}')
logging.info(f'tpr={tpr} fpr={fpr}')
print(f'tpr={tpr} fpr={fpr}')
run_result = np.append(run_result, np.array(line))
np.save('run_result_huge', run_result)
df = pd.DataFrame(data=run_result,
columns=['module_count', 'module_config',
'fold-0-acc', 'fold-0-tpr', 'fold-0-fpr',
'fold-1-acc', 'fold-1-tpr', 'fold-1-fpr',
'fold-2-acc', 'fold-2-tpr', 'fold-2-fpr',
'fold-3-acc', 'fold-3-tpr', 'fold-3-fpr',
'fold-4-acc', 'fold-4-tpr', 'fold-4-fpr',
'fold-5-acc', 'fold-5-tpr', 'fold-5-fpr'],
index=None)
df.to_excel(save_excel)