Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix issue 486 - in correct sign of the y component of the spin moments #487

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,13 +24,12 @@ we hit release version 1.0.0.
- Siesta sparse matrices could in some cases set wrong diagonal
components
- orbital quantum numbers from HSX file was wrong in v1, #462
- corrected sign for spin-Y direction, PDOS, spin_moment, #486
- RealSpaceSI for right semi-infinite directions, #475
- tbtrans files now have a separate entry in the documentation

### Changed
- changed DIIS solver to assume the matrix is symmetric (it is)

### Changed
- tbtncSileTBtrans and its derivates has changed, drastically.
This will accommodate changes related to #477 and #478.
Now `*_transmission` refers to energy resolved transmissions
Expand Down
24 changes: 16 additions & 8 deletions sisl/physics/electron.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,16 +229,22 @@ def dot(v):
# Initialize data
PDOS = np.empty([4, state.shape[1] // 2, len(E)], dtype=dtype_complex_to_real(state.dtype))

# Do spin-box calculations:
# PDOS[0] = total DOS (diagonal)
# PDOS[1] = x == < psi | \sigma_x S | psi >
# PDOS[2] = y == < psi | \sigma_y S | psi >
# PDOS[3] = z == < psi | \sigma_z S | psi >

d = distribution(E - eig[0]).reshape(1, -1)
cs = conj(state[0]).reshape(-1, 2)
v = S.dot(state[0].reshape(-1, 2))
D1 = (cs * v).real # uu,dd PDOS
PDOS[0, :, :] = D1.sum(1).reshape(-1, 1) * d # total DOS
PDOS[3, :, :] = (D1[:, 0] - D1[:, 1]).reshape(-1, 1) * d # z-dos
D1 = (cs[:, 1] * v[:, 0]).reshape(-1, 1)
D2 = (cs[:, 0] * v[:, 1]).reshape(-1, 1)
D1 = (cs[:, 1] * v[:, 0]).reshape(-1, 1) # d,u
D2 = (cs[:, 0] * v[:, 1]).reshape(-1, 1) # u,d
PDOS[1, :, :] = (D1.real + D2.real) * d # x-dos
PDOS[2, :, :] = (D1.imag - D2.imag) * d # y-dos
PDOS[2, :, :] = (D2.imag - D1.imag) * d # y-dos
for i in range(1, len(eig)):
d = distribution(E - eig[i]).reshape(1, -1)
cs = conj(state[i]).reshape(-1, 2)
Expand All @@ -249,7 +255,7 @@ def dot(v):
D1 = (cs[:, 1] * v[:, 0]).reshape(-1, 1)
D2 = (cs[:, 0] * v[:, 1]).reshape(-1, 1)
PDOS[1, :, :] += (D1.real + D2.real) * d
PDOS[2, :, :] += (D1.imag - D2.imag) * d
PDOS[2, :, :] += (D2.imag - D1.imag) * d

else:
PDOS = (conj(state[0]) * S.dot(state[0])).real.reshape(-1, 1) \
Expand Down Expand Up @@ -403,6 +409,8 @@ def dot(v):
if S.shape[1] == state.shape[1]:
S = S[::2, ::2]

# see PDOS for details related to the spin-box calculations

if project:
s = np.empty([state.shape[0], state.shape[1] // 2, 3], dtype=dtype_complex_to_real(state.dtype))

Expand All @@ -414,7 +422,7 @@ def dot(v):
D1 = cs[:, 1] * Sstate[:, 0]
D2 = cs[:, 0] * Sstate[:, 1]
s[i, :, 0] = D1.real + D2.real
s[i, :, 1] = D1.imag - D2.imag
s[i, :, 1] = D2.imag - D1.imag

else:
s = np.empty([state.shape[0], 3], dtype=dtype_complex_to_real(state.dtype))
Expand All @@ -427,9 +435,9 @@ def dot(v):
cs = conj(state[i]).reshape(-1, 2)
Sstate = S.dot(state[i].reshape(-1, 2))
D = cs.T @ Sstate
s[i, 2] = (D[0, 0] - D[1, 1]).real
s[i, 0] = (D[1, 0] + D[0, 1]).real
s[i, 1] = (D[1, 0] - D[0, 1]).imag
s[i, 2] = D[0, 0].real - D[1, 1].real
s[i, 0] = D[1, 0].real + D[0, 1].real
s[i, 1] = D[0, 1].imag - D[1, 0].imag

return s

Expand Down
70 changes: 70 additions & 0 deletions sisl/physics/tests/test_hamiltonian.py
Original file line number Diff line number Diff line change
Expand Up @@ -1116,6 +1116,76 @@ def test_pdos4(self, setup):
assert PDOS.dtype.kind == 'f'
assert np.allclose(PDOS.sum(0), DOS)

def test_pdos_nc(self):
geom = Geometry([0] * 3)
H = Hamiltonian(geom, spin="nc")
spin = H.spin
# this should be Hermitian
H[0, 0] = np.array([1, 2, 3, 4])
E = [0]
def dist(E, *args):
return np.ones(len(E))

# just get a fictional PDOS
es = H.eigenstate()
PDOS = es.PDOS(E, dist)[..., 0]
SM = es.spin_moment()
SMp = es.spin_moment(project=True)

# now check with spin stuff
pdos = es.inner().real
assert np.allclose(PDOS[0, 0], pdos.sum())

pdos = es.inner(matrix=spin.X).real
assert np.allclose(PDOS[1, 0], pdos.sum())
assert np.allclose(SM[:, 0], pdos)
assert np.allclose(SMp[:, :, 0].sum(-1), pdos)

pdos = es.inner(matrix=spin.Y).real
assert np.allclose(PDOS[2, 0], pdos.sum())
assert np.allclose(SM[:, 1], pdos)
assert np.allclose(SMp[:, :, 1].sum(-1), pdos)

pdos = es.inner(matrix=spin.Z).real
assert np.allclose(PDOS[3, 0], pdos.sum())
assert np.allclose(SM[:, 2], pdos)
assert np.allclose(SMp[:, :, 2].sum(-1), pdos)

def test_pdos_so(self):
geom = Geometry([0] * 3)
H = Hamiltonian(geom, spin="soc")
spin = H.spin
# this should be Hermitian
H[0, 0] = np.array([1, 2, 3, 4, 0, 0, 3, -4])
E = [0]
def dist(E, *args):
return np.ones(len(E))

# just get a fictional PDOS
es = H.eigenstate()
PDOS = es.PDOS(E, dist)[..., 0]
SM = es.spin_moment()
SMp = es.spin_moment(project=True)

# now check with spin stuff
pdos = es.inner().real
assert np.allclose(PDOS[0, 0], pdos.sum())

pdos = es.inner(matrix=spin.X).real
assert np.allclose(PDOS[1, 0], pdos.sum())
assert np.allclose(SM[:, 0], pdos)
assert np.allclose(SMp[:, :, 0].sum(-1), pdos)

pdos = es.inner(matrix=spin.Y).real
assert np.allclose(PDOS[2, 0], pdos.sum())
assert np.allclose(SM[:, 1], pdos)
assert np.allclose(SMp[:, :, 1].sum(-1), pdos)

pdos = es.inner(matrix=spin.Z).real
assert np.allclose(PDOS[3, 0], pdos.sum())
assert np.allclose(SM[:, 2], pdos)
assert np.allclose(SMp[:, :, 2].sum(-1), pdos)

def test_coop_against_pdos_nonortho(self, setup):
HS = setup.HS.copy()
HS.construct([(0.1, 1.5), ((0., 1.), (1., 0.1))])
Expand Down