This repository is used to store some of the results from the paper "Multiple Modality Fusion for Object Pose Estimation: A Cross-layer Cross-modal Hybrid CNN Architecture". doi:10.3390/machines11090891
Fig 1: Visualization of Input and Output of the Segmentation Network.
Table 1: Evaluation of 6D Pose (AUC) on the YCB-Video Dataset.Bold numbers are the best indicators.
Objects | PointFuion AUC | PoseCNN+ICP AUC | DenseFusion AUC | MaskedFusion AUC | FFB6D AUC | Proposed Method AUC |
---|---|---|---|---|---|---|
002_master_chef_can | 90.9 | 95.8 | 96.4 | 95.5 | 96.3 | 97.4 |
003_checker_box | 80.5 | 92.7 | 95.5 | 96.7 | 96.3 | 97.4 |
004_sugar_box | 90.4 | 98.2 | 97.5 | 98.1 | 97.6 | 98.0 |
005_tomato_soup_can | 91.9 | 94.5 | 94.6 | 94.3 | 95.6 | 94.5 |
006_mustard_bottle | 88.5 | 98.6 | 97.2 | 98.0 | 97.8 | 97.4 |
007_tuna_fish_can | 93.8 | 97.1 | 96.6 | 96.9 | 96.8 | 98.0 |
008_pudding_box | 87.5 | 97.9 | 96.5 | 97.3 | 97.1 | 98.3 |
009_geltain_box | 95.0 | 98.8 | 98.1 | 98.3 | 98.1 | 98.6 |
010_potted_meat_can | 86.4 | 92.7 | 91.3 | 89.6 | 94.7 | 95.7 |
011_banana | 84.7 | 97.1 | 96.6 | 97.6 | 97.2 | 98.0 |
019_pitcher_base | 85.5 | 97.8 | 97.1 | 97.7 | 97.6 | 96.2 |
021_bleach_cleanser | 81.0 | 96.9 | 95.8 | 95.4 | 96.8 | 95.5 |
024_bowl | 75.7 | 81.0 | 88.2 | 89.6 | 96.3 | 88.5 |
025_mug | 94.2 | 95.0 | 97.1 | 97.1 | 97.3 | 98.2 |
035_power_drill | 71.5 | 98.2 | 96.0 | 96.7 | 97.2 | 97.0 |
036_wood_block | 68.1 | 87.6 | 89.7 | 91.8 | 92.6 | 94.5 |
037_scissors | 76.7 | 91.7 | 95.2 | 92.7 | 97.7 | 98.5 |
040_large_marker | 87.9 | 97.2 | 97.5 | 97.5 | 96.6 | 98.6 |
051_large_clamp | 65.9 | 75.2 | 72.9 | 71.9 | 96.8 | 75.0 |
052_extra_large_clamp | 60.4 | 64.4 | 69.8 | 71.4 | 96.0 | 72.9 |
061_foam_brick | 91.8 | 97.2 | 92.5 | 94.3 | 97.3 | 97.7 |
Table 2: Evaluation of 6D Pose (percentage of ADD-S smaller than 2cm) on the YCB-Video Dataset.Bold numbers are the best indicators.
Objects | PointFuion <2cm | PoseCNN+ICP <2cm | DenseFusion <2cm | MaskedFusion <2cm | Proposed Method <2cm |
---|---|---|---|---|---|
002_master_chef_can | 99.8 | 100.0 | 100.0 | 100.0 | 100.0 |
003_checker_box | 62.6 | 91.6 | 99.5 | 99.8 | 99.8 |
004_sugar_box | 95.4 | 100.0 | 100.0 | 100.0 | 100.0 |
005_tomato_soup_can | 96.9 | 96.6 | 96.9 | 96.9 | 96.9 |
006_mustard_bottle | 84.0 | 100.0 | 100.0 | 100.0 | 100.0 |
007_tuna_fish_can | 99.8 | 100.0 | 100.0 | 99.7 | 100.0 |
008_pudding_box | 96.7 | 100.0 | 100.0 | 100.0 | 100.0 |
009_geltain_box | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
010_potted_meat_can | 88.5 | 93.6 | 93.1 | 94.2 | 98.0 |
011_banana | 70.5 | 99.7 | 100.0 | 100.0 | 100.0 |
019_pitcher_base | 79.8 | 100.0 | 100.0 | 100.0 | 100.0 |
021_bleach_cleanser | 65.0 | 99.4 | 100.0 | 99.4 | 99.8 |
024_bowl | 24.1 | 54.9 | 98.8 | 95.4 | 100.0 |
025_mug | 99.8 | 99.8 | 100.0 | 100.0 | 100.0 |
035_power_drill | 22.8 | 99.6 | 98.7 | 99.5 | 99.6 |
036_wood_block | 18.2 | 80.2 | 94.6 | 100.0 | 98.8 |
037_scissors | 35.9 | 95.6 | 100.0 | 99.9 | 100.0 |
040_large_marker | 80.4 | 99.7 | 100.0 | 99.9 | 100.0 |
051_large_clamp | 50.0 | 74.9 | 79.2 | 78.7 | 80.9 |
052_extra_large_clamp | 20.1 | 48.8 | 76.3 | 75.9 | 82.1 |
061_foam_brick | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Fig 2: Visualization of the Overall Effectiveness of the Framework