Skip to content

Latest commit

 

History

History
68 lines (56 loc) · 6.85 KB

README.md

File metadata and controls

68 lines (56 loc) · 6.85 KB

CMCL6D

This repository is used to store some of the results from the paper "Multiple Modality Fusion for Object Pose Estimation: A Cross-layer Cross-modal Hybrid CNN Architecture". doi:10.3390/machines11090891

Results of CM&CL Module Based Segmentation Network

Fig 1: Visualization of Input and Output of the Segmentation Network.

segResult

Results of Improved Pose Predict Network

Table 1: Evaluation of 6D Pose (AUC) on the YCB-Video Dataset.Bold numbers are the best indicators.

Objects PointFuion AUC PoseCNN+ICP AUC DenseFusion AUC MaskedFusion AUC FFB6D AUC Proposed Method AUC
002_master_chef_can 90.9 95.8 96.4 95.5 96.3 97.4
003_checker_box 80.5 92.7 95.5 96.7 96.3 97.4
004_sugar_box 90.4 98.2 97.5 98.1 97.6 98.0
005_tomato_soup_can 91.9 94.5 94.6 94.3 95.6 94.5
006_mustard_bottle 88.5 98.6 97.2 98.0 97.8 97.4
007_tuna_fish_can 93.8 97.1 96.6 96.9 96.8 98.0
008_pudding_box 87.5 97.9 96.5 97.3 97.1 98.3
009_geltain_box 95.0 98.8 98.1 98.3 98.1 98.6
010_potted_meat_can 86.4 92.7 91.3 89.6 94.7 95.7
011_banana 84.7 97.1 96.6 97.6 97.2 98.0
019_pitcher_base 85.5 97.8 97.1 97.7 97.6 96.2
021_bleach_cleanser 81.0 96.9 95.8 95.4 96.8 95.5
024_bowl 75.7 81.0 88.2 89.6 96.3 88.5
025_mug 94.2 95.0 97.1 97.1 97.3 98.2
035_power_drill 71.5 98.2 96.0 96.7 97.2 97.0
036_wood_block 68.1 87.6 89.7 91.8 92.6 94.5
037_scissors 76.7 91.7 95.2 92.7 97.7 98.5
040_large_marker 87.9 97.2 97.5 97.5 96.6 98.6
051_large_clamp 65.9 75.2 72.9 71.9 96.8 75.0
052_extra_large_clamp 60.4 64.4 69.8 71.4 96.0 72.9
061_foam_brick 91.8 97.2 92.5 94.3 97.3 97.7

Table 2: Evaluation of 6D Pose (percentage of ADD-S smaller than 2cm) on the YCB-Video Dataset.Bold numbers are the best indicators.

Objects PointFuion <2cm PoseCNN+ICP <2cm DenseFusion <2cm MaskedFusion <2cm Proposed Method <2cm
002_master_chef_can 99.8 100.0 100.0 100.0 100.0
003_checker_box 62.6 91.6 99.5 99.8 99.8
004_sugar_box 95.4 100.0 100.0 100.0 100.0
005_tomato_soup_can 96.9 96.6 96.9 96.9 96.9
006_mustard_bottle 84.0 100.0 100.0 100.0 100.0
007_tuna_fish_can 99.8 100.0 100.0 99.7 100.0
008_pudding_box 96.7 100.0 100.0 100.0 100.0
009_geltain_box 100.0 100.0 100.0 100.0 100.0
010_potted_meat_can 88.5 93.6 93.1 94.2 98.0
011_banana 70.5 99.7 100.0 100.0 100.0
019_pitcher_base 79.8 100.0 100.0 100.0 100.0
021_bleach_cleanser 65.0 99.4 100.0 99.4 99.8
024_bowl 24.1 54.9 98.8 95.4 100.0
025_mug 99.8 99.8 100.0 100.0 100.0
035_power_drill 22.8 99.6 98.7 99.5 99.6
036_wood_block 18.2 80.2 94.6 100.0 98.8
037_scissors 35.9 95.6 100.0 99.9 100.0
040_large_marker 80.4 99.7 100.0 99.9 100.0
051_large_clamp 50.0 74.9 79.2 78.7 80.9
052_extra_large_clamp 20.1 48.8 76.3 75.9 82.1
061_foam_brick 100.0 100.0 100.0 100.0 100.0

Fig 2: Visualization of the Overall Effectiveness of the Framework

6dReult