Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Thomasht86/update colpali notebooks #979

Merged
merged 5 commits into from
Nov 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,8 @@
"from colpali_engine.utils.colpali_processing_utils import (\n",
" process_images,\n",
" process_queries,\n",
")"
")\n",
"from torch.amp import autocast"
]
},
{
Expand Down Expand Up @@ -88,13 +89,13 @@
"source": [
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\")\n",
" type = torch.bfloat16\n",
" dtype = torch.bfloat16\n",
"elif torch.backends.mps.is_available():\n",
" device = torch.device(\"mps\")\n",
" type = torch.float32\n",
" dtype = torch.float32\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
" type = torch.float32"
" dtype = torch.float32"
]
},
{
Expand Down Expand Up @@ -286,7 +287,7 @@
"source": [
"model_name = \"vidore/colpali-v1.2\"\n",
"model = ColPali.from_pretrained(\n",
" \"vidore/colpaligemma-3b-pt-448-base\", torch_dtype=type\n",
" \"vidore/colpaligemma-3b-pt-448-base\", torch_dtype=dtype\n",
").eval()\n",
"model.load_adapter(model_name)\n",
"model = model.eval()\n",
Expand Down Expand Up @@ -356,9 +357,10 @@
"embeddings = []\n",
"for batch_doc in tqdm(dataloader):\n",
" with torch.no_grad():\n",
" batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}\n",
" embeddings_doc = model(**batch_doc)\n",
" embeddings.extend(list(torch.unbind(embeddings_doc.to(\"cpu\"))))"
" with autocast(device_type=device.type):\n",
" batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}\n",
" embeddings_doc = model(**batch_doc)\n",
" embeddings.extend(list(torch.unbind(embeddings_doc.to(\"cpu\"))))"
]
},
{
Expand Down Expand Up @@ -392,9 +394,10 @@
"query_embeddings = []\n",
"for batch_query in tqdm(dataloader):\n",
" with torch.no_grad():\n",
" batch_query = {k: v.to(model.device) for k, v in batch_query.items()}\n",
" embeddings_query = model(**batch_query)\n",
" query_embeddings.extend(list(torch.unbind(embeddings_query.to(\"cpu\"))))"
" with autocast(device_type=device.type):\n",
" batch_query = {k: v.to(model.device) for k, v in batch_query.items()}\n",
" embeddings_query = model(**batch_query)\n",
" query_embeddings.extend(list(torch.unbind(embeddings_query.to(\"cpu\"))))"
]
},
{
Expand Down Expand Up @@ -6238,4 +6241,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@
"\n",
"[ColPali: Efficient Document Retrieval with Vision Language Models Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, Pierre Colombo](https://arxiv.org/abs/2407.01449v2)\n",
"\n",
"ColPail is a combination of [ColBERT](https://blog.vespa.ai/announcing-colbert-embedder-in-vespa/) \n",
"and [PailGemma](https://huggingface.co/blog/paligemma):\n",
"ColPali is a combination of [ColBERT](https://blog.vespa.ai/announcing-colbert-embedder-in-vespa/) \n",
"and [PaliGemma](https://huggingface.co/blog/paligemma):\n",
"\n",
">ColPali is enabled by the latest advances in Vision Language Models, notably the PaliGemma model from the Google Zürich team, and leverages multi-vector retrieval through late interaction mechanisms as proposed in ColBERT by Omar Khattab.\n",
"\n",
Expand Down Expand Up @@ -61,7 +61,7 @@
"\n",
"Let us get started. \n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/colpali-document-retrieval-vision-language-models.ipynb)\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/colpali-document-retrieval-vision-language-models-cloud.ipynb)\n",
"\n",
"\n",
"Install dependencies: \n",
Expand Down Expand Up @@ -100,7 +100,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {
"id": "qKFOvdo5nCVl"
},
Expand All @@ -118,7 +118,8 @@
" process_images,\n",
" process_queries,\n",
")\n",
"from colpali_engine.utils.image_utils import scale_image, get_base64_image"
"from colpali_engine.utils.image_utils import scale_image, get_base64_image\n",
"from torch.amp import autocast"
]
},
{
Expand All @@ -142,19 +143,19 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\")\n",
" type = torch.bfloat16\n",
" dtype = torch.bfloat16\n",
"elif torch.backends.mps.is_available():\n",
" device = torch.device(\"mps\")\n",
" type = torch.float32\n",
" dtype = torch.float32\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
" type = torch.float32"
" dtype = torch.float32"
]
},
{
Expand Down Expand Up @@ -339,7 +340,7 @@
"source": [
"model_name = \"vidore/colpali-v1.2\"\n",
"model = ColPali.from_pretrained(\n",
" \"vidore/colpaligemma-3b-pt-448-base\", torch_dtype=type\n",
" \"vidore/colpaligemma-3b-pt-448-base\", torch_dtype=dtype\n",
").eval()\n",
"model.load_adapter(model_name)\n",
"model = model.eval()\n",
Expand Down Expand Up @@ -497,7 +498,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
Expand Down Expand Up @@ -526,9 +527,10 @@
" )\n",
" for batch_doc in tqdm(dataloader):\n",
" with torch.no_grad():\n",
" batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}\n",
" embeddings_doc = model(**batch_doc)\n",
" page_embeddings.extend(list(torch.unbind(embeddings_doc.to(\"cpu\"))))\n",
" with autocast(device_type=device.type):\n",
" batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}\n",
" embeddings_doc = model(**batch_doc)\n",
" page_embeddings.extend(list(torch.unbind(embeddings_doc.cpu())))\n",
" pdf[\"embeddings\"] = page_embeddings"
]
},
Expand Down Expand Up @@ -927,7 +929,7 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": null,
"metadata": {
"id": "NxeDd3mcYDpL"
},
Expand All @@ -942,9 +944,10 @@
"qs = []\n",
"for batch_query in dataloader:\n",
" with torch.no_grad():\n",
" batch_query = {k: v.to(model.device) for k, v in batch_query.items()}\n",
" embeddings_query = model(**batch_query)\n",
" qs.extend(list(torch.unbind(embeddings_query.to(\"cpu\"))))"
" with autocast(device_type=device.type):\n",
" batch_query = {k: v.to(model.device) for k, v in batch_query.items()}\n",
" embeddings_query = model(**batch_query)\n",
" qs.extend(list(torch.unbind(embeddings_query.cpu())))"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,8 @@
" process_images,\n",
" process_queries,\n",
")\n",
"from colpali_engine.utils.image_utils import scale_image, get_base64_image"
"from colpali_engine.utils.image_utils import scale_image, get_base64_image\n",
"from torch.amp import autocast"
]
},
{
Expand Down Expand Up @@ -133,13 +134,13 @@
"source": [
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\")\n",
" type = torch.bfloat16\n",
" dtype = torch.bfloat16\n",
"elif torch.backends.mps.is_available():\n",
" device = torch.device(\"mps\")\n",
" type = torch.float32\n",
" dtype = torch.float32\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
" type = torch.float32"
" dtype = torch.float32"
]
},
{
Expand Down Expand Up @@ -331,7 +332,7 @@
"source": [
"model_name = \"vidore/colpali-v1.2\"\n",
"model = ColPali.from_pretrained(\n",
" \"vidore/colpaligemma-3b-pt-448-base\", torch_dtype=type\n",
" \"vidore/colpaligemma-3b-pt-448-base\", torch_dtype=dtype\n",
").eval()\n",
"model.load_adapter(model_name)\n",
"model = model.eval()\n",
Expand Down Expand Up @@ -432,14 +433,15 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {
"id": "YaDInfmT3Tbu"
},
"outputs": [],
"source": [
"for pdf in sample_pdfs:\n",
" page_images, page_texts = get_pdf_images(pdf[\"url\"])\n",
"\n",
" pdf[\"images\"] = page_images\n",
" pdf[\"texts\"] = page_texts"
]
Expand Down Expand Up @@ -590,9 +592,10 @@
" )\n",
" for batch_doc in tqdm(dataloader):\n",
" with torch.no_grad():\n",
" batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}\n",
" embeddings_doc = model(**batch_doc)\n",
" page_embeddings.extend(list(torch.unbind(embeddings_doc.to(\"cpu\"))))\n",
" with autocast(device_type=device.type):\n",
" batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}\n",
" embeddings_doc = model(**batch_doc)\n",
" page_embeddings.extend(list(torch.unbind(embeddings_doc.to(\"cpu\"))))\n",
" pdf[\"embeddings\"] = page_embeddings"
]
},
Expand Down Expand Up @@ -974,9 +977,10 @@
"qs = []\n",
"for batch_query in dataloader:\n",
" with torch.no_grad():\n",
" batch_query = {k: v.to(model.device) for k, v in batch_query.items()}\n",
" embeddings_query = model(**batch_query)\n",
" qs.extend(list(torch.unbind(embeddings_query.to(\"cpu\"))))"
" with autocast(device_type=device.type):\n",
" batch_query = {k: v.to(model.device) for k, v in batch_query.items()}\n",
" embeddings_query = model(**batch_query)\n",
" qs.extend(list(torch.unbind(embeddings_query.to(\"cpu\"))))"
]
},
{
Expand Down
Loading