Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Explicitly compute TP, FP in val.py #5727

Merged
merged 1 commit into from
Nov 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 15 additions & 6 deletions utils/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def fitness(x):
return (x[:, :4] * w).sum(1)


def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
Expand All @@ -37,15 +37,15 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

# Find unique classes
unique_classes = np.unique(target_cls)
unique_classes, nt = np.unique(target_cls, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections

# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = (target_cls == c).sum() # number of labels
n_l = nt[ci] # number of labels
n_p = i.sum() # number of predictions

if n_p == 0 or n_l == 0:
Expand All @@ -56,7 +56,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
tpc = tp[i].cumsum(0)

# Recall
recall = tpc / (n_l + 1e-16) # recall curve
recall = tpc / (n_l + eps) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases

# Precision
Expand All @@ -70,7 +70,7 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
py.append(np.interp(px, mrec, mpre)) # precision at [email protected]

# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
f1 = 2 * p * r / (p + r + eps)
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
names = {i: v for i, v in enumerate(names)} # to dict
if plot:
Expand All @@ -80,7 +80,10 @@ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')

i = f1.mean(0).argmax() # max F1 index
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
return tp, fp, p, r, f1, ap, unique_classes.astype('int32')


def compute_ap(recall, precision):
Expand Down Expand Up @@ -162,6 +165,12 @@ def process_batch(self, detections, labels):
def matrix(self):
return self.matrix

def tp_fp(self):
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return tp[:-1], fp[:-1] # remove background class

def plot(self, normalize=True, save_dir='', names=()):
try:
import seaborn as sn
Expand Down
2 changes: 1 addition & 1 deletion val.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,7 @@ def run(data,
# Compute metrics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
Expand Down