Fix and unify docs about maximal lattices #1307
Merged
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2356 docstrings not included in the manual:
modulus :: Union{Tuple{fqPolyRepField}, Tuple{fqPolyRepField, Union{Char, AbstractString, Symbol}}}
modulus :: Tuple{FlintPuiseuxSeriesElem}
modulus :: Union{Tuple{FqPolyRepField}, Tuple{FqPolyRepField, Union{Char, AbstractString, Symbol}}}
different_divisor :: Tuple{AbstractAlgebra.Generic.FunctionField}
is_twist :: Tuple{EllCrv, EllCrv}
signature_tuples :: Tuple{Hecke.QuadSpace}
NmodAbsSeriesRing
fqPolyRepPolyRing
basis_matrix :: Tuple{Hecke.AbsAlgAssIdl}
basis_matrix :: Tuple{Hecke.NfAbsOrdFracIdl}
basis_matrix :: Tuple{Vector{<:NumFieldElem}}
basis_matrix :: Tuple{Hecke.AlgAssRelOrdIdl}
basis_matrix :: Tuple{Hecke.AlgAssAbsOrd}
basis_matrix :: Tuple{Union{Hecke.NfRelOrdFracIdl, Hecke.NfRelOrdIdl}}
basis_matrix :: Tuple{Hecke.AlgAssAbsOrdIdl}
basis_matrix :: Tuple{Hecke.GenOrdIdl}
basis_matrix :: Tuple{Hecke.AlgAssRelOrd}
composition_factors_with_multiplicity :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}} where {S, T, V}
is_maximal :: Tuple{Hecke.AlgAssAbsOrd}
is_maximal :: Tuple{Hecke.AlgAssRelOrd}
is_maximal :: Tuple{NumFieldOrd}
nrootscubic :: NTuple{4, Any}
cycle :: Tuple{QuadBin{ZZRingElem}}
HessQRModule
FiniteField
is_embedded :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField
is_real :: Tuple{InfPlc}
get_b_integral :: Tuple{Any}
multiplication_by_m_map :: Union{Tuple{S}, Tuple{EllCrv, S}} where S<:Union{Integer, ZZRingElem}
isimaginary
is_prime_power :: Tuple{Union{Integer, ZZRingElem}}
nmod_poly
FpMPolyRingElem
iscm_field_easy
getindex :: Union{Tuple{T}, Tuple{SRow{T}, Int64}} where T<:RingElem
getindex :: Tuple{Ring, GroupsCore.Group}
getindex :: Tuple{GrpGen, Int64}
getindex :: Tuple{TorQuadModule, Int64}
gfp_elem
nullspace :: Union{Tuple{SMat{T}}, Tuple{T}} where T<:FieldElement
maximal_submodules :: Union{Tuple{Hecke.ModAlgAss{S, T, V}}, Tuple{V}, Tuple{T}, Tuple{S}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64}, Tuple{Hecke.ModAlgAss{S, T, V}, Int64, Any}} where {S, T, V}
extend_to_cyclotomic :: Tuple{CyclotomicExt, NfToNfMor}
pol_length :: Tuple{ZZLaurentSeriesRingElem}
fmpz_rel_series
qadic
ideal_class_monoid :: Tuple{T} where T<:Union{Hecke.AlgAssAbsOrd, NfAbsOrd}
picard_group :: Union{Tuple{Hecke.AlgAssAbsOrd}, Tuple{Hecke.AlgAssAbsOrd, Bool}}
hensel_qf :: Union{Tuple{T}, Tuple{T, T, Any, Any, Any}} where T<:Union{ZZModMatrix, zzModMatrix}
multgrp_of_cyclic_grp :: Tuple{ZZRingElem}
isquadratic_type
GenusQuad
weierstrass_p :: Union{Tuple{ComplexFieldElem, ComplexFieldElem}, Tuple{ComplexFieldElem, ComplexFieldElem, Int64}}
weierstrass_p :: Tuple{acb, acb}
det_given_divisor :: Union{Tuple{ZZMatrix, ZZRingElem}, Tuple{ZZMatrix, ZZRingElem, Any}}
det_given_divisor :: Union{Tuple{ZZMatrix, Integer}, Tuple{ZZMatrix, Integer, Any}}
rresx :: Tuple{ZZPolyRingElem, ZZPolyRingElem}
rresx :: Union{Tuple{T}, Tuple{S}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where {S<:Union{Integer, ZZRingElem}, T<:ResElem{S}}
QQFieldElem :: Tuple{qqbar}
QQFieldElem
isfrom_db
matrix_algebra :: Tuple{Ring, NCRing, Int64}
matrix_algebra :: Tuple{Ring, Vector{<:MatElem}}
matrix_algebra :: Tuple{Ring, Int64}
matrix_algebra :: Tuple{Ring, NCRing, Vector{<:MatElem}}
fq_default_mpoly
issurjective
is_isometric_with_isometry :: Union{Tuple{M}, Tuple{F}, Tuple{Hecke.QuadSpace{F, M}, Hecke.QuadSpace{F, M}}} where {F, M}
sinhcosh :: Tuple{acb}
sinhcosh :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
isdivisible_mod_ideal
rsqrt :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
rsqrt :: Tuple{arb}
rsqrt :: Tuple{acb}
rsqrt :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
companion_matrix :: Tuple{PolyRingElem}
quadratic_defect :: Tuple{NumFieldOrdElem, Union{NfAbsOrdIdl, Hecke.NfRelOrdIdl}}
quadratic_defect :: Tuple{Any, Any}
isnorm_
|
The logs for this run have expired and are no longer available.
Loading