Skip to content

Rename mul to *

Rename mul to * #4246

Triggered via pull request October 11, 2023 15:50
Status Failure
Total duration 1h 20m 16s
Artifacts
This run and associated checks have been archived and are scheduled for deletion. Learn more about checks retention

CI.yml

on: pull_request
Matrix: test
Fit to window
Zoom out
Zoom in

Annotations

5 errors and 1 warning
test (~1.10.0-0, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (~1.10.0-0, ubuntu-latest)
The operation was canceled.
test (nightly, ubuntu-latest)
The runner has received a shutdown signal. This can happen when the runner service is stopped, or a manually started runner is canceled.
test (nightly, ubuntu-latest)
The operation was canceled.
test (1.9, macOS-latest)
Process completed with exit code 1.
Documentation: ../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2349 docstrings not included in the manual: isfinite_gen principal_generator_fac_elem :: Tuple{FacElem{NfOrdIdl, Hecke.NfAbsOrdIdlSet{AnticNumberField, nf_elem}}} EvalEnv isquaternion_algebra group :: Tuple{AlgGrp} fmpz_poly reduce! :: Tuple{nf_elem} chebyshev_u2 :: Tuple{Int64, arb} chebyshev_u2 :: Union{Tuple{Int64, RealFieldElem}, Tuple{Int64, RealFieldElem, Int64}} content_ideal :: Tuple{PolyRingElem{nf_elem}, NfAbsOrd} content_ideal :: Tuple{PolyRingElem{NfAbsOrdElem}} ismaxreal_type subfield :: Tuple{NumField, Vector{<:NumFieldElem}} division_polynomial :: Union{Tuple{S}, Tuple{EllCrv, S}, Tuple{EllCrv, S, Any}, Tuple{EllCrv, S, Any, Any}} where S<:Union{Integer, ZZRingElem} pth_root :: Tuple{FqPolyRepFieldElem} pth_root :: Tuple{FqFieldElem} divisor :: Tuple{FunFldDiff} divisor :: Tuple{AbstractAlgebra.Generic.FunctionFieldElem} divisor :: Tuple{GenOrdFracIdl, GenOrdFracIdl} isfixed_point_free istorsion_unit_group_known factor_mod_pk_init :: Tuple{ZZPolyRingElem, Int64} pseudo_basis :: Tuple{Union{Hecke.NfRelOrdFracIdl, Hecke.NfRelOrdIdl}} pseudo_basis :: Tuple{Hecke.AlgAssRelOrdIdl} pseudo_basis :: Union{Tuple{Hecke.AlgAssRelOrd{S, T, U}}, Tuple{U}, Tuple{T}, Tuple{S}} where {S, T, U} zzModMatrixSpace infinite_place :: Tuple{Hecke.NumFieldEmb} is_isometric_with_isometry :: Union{Tuple{M}, Tuple{F}, Tuple{Hecke.QuadSpace{F, M}, Hecke.QuadSpace{F, M}}} where {F, M} islocally_free issigned_inf generic_group :: Tuple{Any, Any} real_period :: Union{Tuple{EllCrv{QQFieldElem}}, Tuple{EllCrv{QQFieldElem}, Int64}} negation_map :: Tuple{EllCrv} lower_discriminant_bound :: Tuple{Int64, Int64} classical_modular_polynomial trace_lattice_with_isometry :: Union{Tuple{AbstractLat{T}}, Tuple{T}} where T trace_lattice_with_isometry :: Tuple{HermLat, AbstractSpaceRes} representation_matrix_q :: Tuple{nf_elem} finite_maximal_order :: Tuple{AbstractAlgebra.Generic.FunctionField} sparse_matrix :: Union{Tuple{Matrix{T}}, Tuple{T}} where T<:RingElement isequivalent _decompose_in_reflections :: Tuple{QQMatrix, QQMatrix, Any} isogeny_map_phi :: Tuple{Isogeny} clrbit! :: Tuple{ZZRingElem, Int64} docstring :: Tuple{Symbol, Symbol} _multgrp_mod_pv :: Tuple{NfOrdIdl, Int64, NfOrdIdl} isprincipal_fac_elem cyclotomic_field_as_cm_extension :: Tuple{Int64} iscommutative_known is_supersingular :: Union{Tuple{EllCrv{T}}, Tuple{T}} where T<:FinFieldElem GFPRelSeriesRing _is_isotropic_with_vector_mod4 :: Tuple{Any} snf_diagonal :: Tuple{ZZMatrix} has_principal_generator_1_mod_m :: Union{Tuple{Union{FacElem{NfOrdIdl, Hecke.NfAbsOrdIdlSet{AnticNumberField, nf_elem}}, NfOrdIdl}, NfOrdIdl}, Tuple{Union{FacElem{NfOrdIdl, Hecke.NfAbsOrdIdlSet{AnticNumberField, nf_elem}}, NfOrdIdl}, NfOrdIdl, Vector{<:InfPlc}}} _mathnf :: Tuple{MatElem{ZZRingElem}} FmpqRelSeriesRing preimage_map :: Tuple{Nemo.FinFieldMorphism} preimage_map :: Union{Tuple{T}, Tuple{T, T}} where T<:FinField preimage_map :: Tuple{Nemo.FinFieldPreimage} const_khinchin :: Tuple{ArbField} const_khinchin :: Union{Tuple{RealField}, Tuple{RealField, Int64}} ZZModPolyRing divexact_left :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrdIdl{S, T, U}}} where {S, T, U} divexact_left :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdIdl{S, T}, Hecke.AlgAssAbsOrdIdl{S, T}}} where {S, T} divexact_left :: Tuple{Hecke.AbsAlgAssElem, Hecke.AbsAlgAssElem} divexact_left :: Union{Tuple{T}, Tuple{T, T}, Tuple{T, T, Bool}} where T<:Union{Hecke.AlgAssAbsOrdElem, Hecke.AlgAssRelOrdElem} exp_pi_i :: Tuple{qqbar} solve :: Tuple{ZZMatrix, ZZMatrix} decomposition_group :: Tuple{ClassField, InfPlc} istotally_complex is_nonzero :: Tuple{arb} is_nonzero :: Tuple{RealFieldElem} nmod_rel_series reconstruct :: Tuple{ZZRingElem, ZZRingElem} n_positive_roots :: Tuple{ZZPolyRingElem}