Skip to content

Image dehazing with Multiscale Unet Generators and Multiscale Discriminators

Notifications You must be signed in to change notification settings

thanhkaist/Image-Dehazing-Net

Repository files navigation

Image Dehazing Network

Prerequisite

Dowload data set from the link: : https://www.dropbox.com/s/wc3b0q0d3querb3/Dehazing_datasets.zip?dl=0
Create data folder:

mkdir data

Unzip dataset to data folder such that we have:

  • data/IndoorTestHazy
  • data/IndoorTrainGT
  • data/IndoorTrainHazy
  • data/OutdoorTestHazy
  • data/OutdoorTrainGT
  • data/OutdoorTrainHazy

Set up environment:

conda create -n dehaze python=3.6
conda activate dehaze
pip install -r requirement.txt

How to train

Train the network by run corresponding command below:

Indoor:

./net_train_indoor.sh

Outdoor:

./net_train_outdoor.sh

How to test

I provide pretrained model at url: https://drive.google.com/file/d/1WfsmkGmo504ZI7V19_t-euKDNqwW0woC/view?usp=sharing

upzip the pretrained model to src folder such that we have these folders:

  • resultIn/Net1/model/model_best.pt
  • resultOut/Net1/model/model_best.pt

Run test script to generate output images:

./net_test_in_out.sh

All the result will be store in val folder

In case that you want to test your model, read the test_model.sh and modify the pretrained_model path.

Evaluate NIQE

You can download MATLAB evaluation code at this link: https://www.dropbox.com/s/xpcqcucxjn2y28d/evaluation_code.zip?dl=0
Copy your output images into Input folder and run matlab file: evaluate_results.m to get NIQE score

Result

Indoor (NIQE) Outdoor(NIQE)
HAZY 6.4564 4.1471
OUR 3.6753 3.6608

Statistic on 1 GPU Titan X

Indoor Outdoor
Generator parameter 34.1M 34M
Discriminator parameter 5.5M 5.5M
Training time (10000 epoches) 52.9 hour 61.0 hour
Testing time 0.0241 0.1765

About

Image dehazing with Multiscale Unet Generators and Multiscale Discriminators

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published