-
Notifications
You must be signed in to change notification settings - Fork 1
/
niqe.py
298 lines (236 loc) · 9.75 KB
/
niqe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy as np
import scipy.misc
import scipy.io
from os.path import dirname
from os.path import join
import numpy as np
import scipy.special
import math
from PIL import Image
import scipy.ndimage
def gen_gauss_window(lw, sigma):
sd = np.float32(sigma)
lw = int(lw)
weights = [0.0] * (2 * lw + 1)
weights[lw] = 1.0
sum = 1.0
sd *= sd
for ii in range(1, lw + 1):
tmp = np.exp(-0.5 * np.float32(ii * ii) / sd)
weights[lw + ii] = tmp
weights[lw - ii] = tmp
sum += 2.0 * tmp
for ii in range(2 * lw + 1):
weights[ii] /= sum
return weights
def compute_image_mscn_transform(image, C=1, avg_window=None, extend_mode='constant'):
if avg_window is None:
avg_window = gen_gauss_window(3, 7.0/6.0)
assert len(np.shape(image)) == 2
h, w = np.shape(image)
mu_image = np.zeros((h, w), dtype=np.float32)
var_image = np.zeros((h, w), dtype=np.float32)
image = np.array(image).astype('float32')
scipy.ndimage.correlate1d(image, avg_window, 0, mu_image, mode=extend_mode)
scipy.ndimage.correlate1d(mu_image, avg_window, 1, mu_image, mode=extend_mode)
scipy.ndimage.correlate1d(image**2, avg_window, 0, var_image, mode=extend_mode)
scipy.ndimage.correlate1d(var_image, avg_window, 1, var_image, mode=extend_mode)
var_image = np.sqrt(np.abs(var_image - mu_image**2))
return (image - mu_image)/(var_image + C), var_image, mu_image
gamma_range = np.arange(0.2, 10, 0.001)
a = scipy.special.gamma(2.0/gamma_range)
a *= a
b = scipy.special.gamma(1.0/gamma_range)
c = scipy.special.gamma(3.0/gamma_range)
prec_gammas = a/(b*c)
def aggd_features(imdata):
#flatten imdata
imdata.shape = (len(imdata.flat),)
imdata2 = imdata*imdata
left_data = imdata2[imdata<0]
right_data = imdata2[imdata>=0]
left_mean_sqrt = 0
right_mean_sqrt = 0
if len(left_data) > 0:
left_mean_sqrt = np.sqrt(np.average(left_data))
if len(right_data) > 0:
right_mean_sqrt = np.sqrt(np.average(right_data))
if right_mean_sqrt != 0:
gamma_hat = left_mean_sqrt/right_mean_sqrt
else:
gamma_hat = np.inf
#solve r-hat norm
imdata2_mean = np.mean(imdata2)
if imdata2_mean != 0:
r_hat = (np.average(np.abs(imdata))**2) / (np.average(imdata2))
else:
r_hat = np.inf
rhat_norm = r_hat * (((math.pow(gamma_hat, 3) + 1)*(gamma_hat + 1)) / math.pow(math.pow(gamma_hat, 2) + 1, 2))
#solve alpha by guessing values that minimize ro
pos = np.argmin((prec_gammas - rhat_norm)**2);
alpha = gamma_range[pos]
gam1 = scipy.special.gamma(1.0/alpha)
gam2 = scipy.special.gamma(2.0/alpha)
gam3 = scipy.special.gamma(3.0/alpha)
aggdratio = np.sqrt(gam1) / np.sqrt(gam3)
bl = aggdratio * left_mean_sqrt
br = aggdratio * right_mean_sqrt
#mean parameter
N = (br - bl)*(gam2 / gam1)#*aggdratio
return (alpha, N, bl, br, left_mean_sqrt, right_mean_sqrt)
def ggd_features(imdata):
nr_gam = 1/prec_gammas
sigma_sq = np.var(imdata)
E = np.mean(np.abs(imdata))
rho = sigma_sq/E**2
pos = np.argmin(np.abs(nr_gam - rho));
return gamma_range[pos], sigma_sq
def paired_product(new_im):
shift1 = np.roll(new_im.copy(), 1, axis=1)
shift2 = np.roll(new_im.copy(), 1, axis=0)
shift3 = np.roll(np.roll(new_im.copy(), 1, axis=0), 1, axis=1)
shift4 = np.roll(np.roll(new_im.copy(), 1, axis=0), -1, axis=1)
H_img = shift1 * new_im
V_img = shift2 * new_im
D1_img = shift3 * new_im
D2_img = shift4 * new_im
return (H_img, V_img, D1_img, D2_img)
# only used during training
# from skimage.util.shape import view_as_windows
def _niqe_extract_subband_feats(mscncoefs):
# alpha_m, = extract_ggd_features(mscncoefs)
alpha_m, N, bl, br, lsq, rsq = aggd_features(mscncoefs.copy())
pps1, pps2, pps3, pps4 = paired_product(mscncoefs)
alpha1, N1, bl1, br1, lsq1, rsq1 = aggd_features(pps1)
alpha2, N2, bl2, br2, lsq2, rsq2 = aggd_features(pps2)
alpha3, N3, bl3, br3, lsq3, rsq3 = aggd_features(pps3)
alpha4, N4, bl4, br4, lsq4, rsq4 = aggd_features(pps4)
return np.array([alpha_m, (bl + br) / 2.0,
alpha1, N1, bl1, br1, # (V)
alpha2, N2, bl2, br2, # (H)
alpha3, N3, bl3, bl3, # (D1)
alpha4, N4, bl4, bl4, # (D2)
])
def get_patches_train_features(img, patch_size, stride=8):
return _get_patches_generic(img, patch_size, 1, stride)
def get_patches_test_features(img, patch_size, stride=8):
return _get_patches_generic(img, patch_size, 0, stride)
def extract_on_patches(img, patch_size):
h, w = img.shape
patch_size = np.int(patch_size)
patches = []
for j in range(0, h - patch_size + 1, patch_size):
for i in range(0, w - patch_size + 1, patch_size):
patch = img[j:j + patch_size, i:i + patch_size]
patches.append(patch)
patches = np.array(patches)
patch_features = []
for p in patches:
patch_features.append(_niqe_extract_subband_feats(p))
patch_features = np.array(patch_features)
return patch_features
def _get_patches_generic(img, patch_size, is_train, stride):
h, w = np.shape(img)
if h < patch_size or w < patch_size:
print("Input image is too small")
exit(0)
# ensure that the patch divides evenly into img
hoffset = (h % patch_size)
woffset = (w % patch_size)
if hoffset > 0:
img = img[:-hoffset, :]
if woffset > 0:
img = img[:, :-woffset]
img = img.astype(np.float32)
img2 = np.array(Image.fromarray(img).resize((img.shape[0]//2,img.shape[1]//2),Image.BICUBIC))
mscn1, var, mu = compute_image_mscn_transform(img)
mscn1 = mscn1.astype(np.float32)
mscn2, _, _ = compute_image_mscn_transform(img2)
mscn2 = mscn2.astype(np.float32)
feats_lvl1 = extract_on_patches(mscn1, patch_size)
feats_lvl2 = extract_on_patches(mscn2, patch_size / 2)
feats = np.hstack((feats_lvl1, feats_lvl2)) # feats_lvl3))
# if is_train:
# variancefield = view_as_windows(var, (patch_size, patch_size), step=patch_size)
# variancefield = variancefield.reshape(-1, patch_size, patch_size)
# avg_variance = np.mean(np.mean(variancefield, axis=2), axis=1)
# avg_variance /= np.max(avg_variance)
# feats = feats[avg_variance > 0.75]
return feats
def niqe(inputVideoData):
"""Computes Naturalness Image Quality Evaluator. [#f1]_
Input a video of any quality and get back its distance frame-by-frame
from naturalness.
Parameters
----------
inputVideoData : ndarray
Input video, ndarray of dimension (T, M, N, C), (T, M, N), (M, N, C), or (M, N),
where T is the number of frames, M is the height, N is width,
and C is number of channels. Here C is only allowed to be 1.
Returns
-------
niqe_array : ndarray
The niqe results, ndarray of dimension (T,), where T
is the number of frames
References
----------
.. [#f1] Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a 'completely blind' image quality analyzer." IEEE Signal Processing Letters 20.3 (2013): 209-212.
"""
# cache
patch_size = 96
module_path = dirname(__file__)
# TODO: memoize
params = scipy.io.loadmat( 'niqe_image_params.mat')
pop_mu = np.ravel(params["pop_mu"])
pop_cov = params["pop_cov"]
# load the training data
inputVideoData = vshape(inputVideoData)
T, M, N, C = inputVideoData.shape
assert C == 1, "niqe called with videos containing %d channels. Please supply only the luminance channel" % (C,)
assert M > (
patch_size * 2 + 1), "niqe called with small frame size, requires > 192x192 resolution video using current training parameters"
assert N > (
patch_size * 2 + 1), "niqe called with small frame size, requires > 192x192 resolution video using current training parameters"
niqe_scores = np.zeros(T, dtype=np.float32)
for t in range(T):
feats = get_patches_test_features(inputVideoData[t, :, :, 0], patch_size)
sample_mu = np.mean(feats, axis=0)
sample_cov = np.cov(feats.T)
X = sample_mu - pop_mu
covmat = ((pop_cov + sample_cov) / 2.0)
pinvmat = scipy.linalg.pinv(covmat)
niqe_scores[t] = np.sqrt(np.dot(np.dot(X, pinvmat), X))
return niqe_scores
def vshape(videodata):
"""Standardizes the input data shape.
Transforms video data into the standardized shape (T, M, N, C), where
T is number of frames, M is height, N is width, and C is number of
channels.
Parameters
----------
videodata : ndarray
Input data of shape (T, M, N, C), (T, M, N), (M, N, C), or (M, N), where
T is number of frames, M is height, N is width, and C is number of
channels.
Returns
-------
videodataout : ndarray
Standardized version of videodata, shape (T, M, N, C)
"""
if not isinstance(videodata, np.ndarray):
videodata = np.array(videodata)
if len(videodata.shape) == 2:
a, b = videodata.shape
return videodata.reshape(1, a, b, 1)
elif len(videodata.shape) == 3:
a, b, c = videodata.shape
# check the last dimension small
# interpret as color channel
if c in [1, 2, 3, 4]:
return videodata.reshape(1, a, b, c)
else:
return videodata.reshape(a, b, c, 1)
elif len(videodata.shape) == 4:
return videodata
else:
raise ValueError("Improper data input")