-
Notifications
You must be signed in to change notification settings - Fork 97
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
* #13373: PyTorch Tracing Sweeps for set 2 * #13373: Update golden function * #13421: Update * #13421: Update where sweep
- Loading branch information
1 parent
ccb884a
commit e71b3e8
Showing
14 changed files
with
1,290 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
193 changes: 193 additions & 0 deletions
193
tests/sweep_framework/sweeps/eltwise/binary/div/div_tensor_pytorch2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
|
||
parameters = { | ||
"nightly": { | ||
"input_specs": [ | ||
{"shape": [0, 1], "other": 1.0}, | ||
{"shape": [1, 1, 16384, 256], "other": 5.656854249492381}, | ||
{"shape": [1, 1, 19200, 300], "other": 8.0}, | ||
{"shape": [1, 1, 256], "other": 0.5}, | ||
{"shape": [1, 1024, 640], "other": 1.0}, | ||
{"shape": [1, 12, 10, 10], "other": 8.0}, | ||
{"shape": [1, 12, 12, 12], "other": 8.0}, | ||
{"shape": [1, 12, 14, 14], "other": 8.0}, | ||
{"shape": [1, 12, 16, 64], "other": 8.0}, | ||
{"shape": [1, 12, 197, 197], "other": 8.0}, | ||
{"shape": [1, 12, 201, 201], "other": 8.0}, | ||
{"shape": [1, 12, 25, 25], "other": 8.0}, | ||
{"shape": [1, 12, 7, 7], "other": []}, | ||
{"shape": [1, 12, 9, 9], "other": 8.0}, | ||
{"shape": [1, 128, 1536], "other": 3}, | ||
{"shape": [1, 1280, 16, 16], "other": 1.0}, | ||
{"shape": [1, 1280, 8, 8], "other": 1}, | ||
{"shape": [1, 1280, 8, 8], "other": 1.0}, | ||
{"shape": [1, 16, 1, 6], "other": []}, | ||
# {"shape": [1, 16, 1, s10 + 1], "other": []}, | ||
{"shape": [1, 16, 197, 197], "other": 8.0}, | ||
{"shape": [1, 16, 256, 256], "other": 8.0}, | ||
{"shape": [1, 16, 5, 5], "other": []}, | ||
{"shape": [1, 16, 9, 9], "other": 11.313708498984761}, | ||
{"shape": [1, 16, 9, 9], "other": 8.0}, | ||
{"shape": [1, 1], "other": 16}, | ||
{"shape": [1, 1], "other": 2.0794415416798357}, | ||
{"shape": [1, 2, 4096, 256], "other": 5.656854249492381}, | ||
{"shape": [1, 2, 4800, 300], "other": 8.0}, | ||
{"shape": [1, 23, 40, 1], "other": [128]}, | ||
{"shape": [1, 23, 40], "other": [1, 1, 40]}, | ||
{"shape": [1, 23, 40], "other": [1, 23, 1]}, | ||
{"shape": [1, 24, 64, 32], "other": [1, 24, 64, 32]}, | ||
{"shape": [1, 256, 1280], "other": 1.0}, | ||
{"shape": [1, 256, 384], "other": 3}, | ||
{"shape": [1, 3, 1445, 1445], "other": 8.0}, | ||
{"shape": [1, 32, 24576], "other": 3}, | ||
{"shape": [1, 32, 64, 32], "other": [1, 32, 64, 32]}, | ||
{"shape": [1, 320, 64, 64], "other": 1.0}, | ||
{"shape": [1, 4096, 320], "other": 1.0}, | ||
{"shape": [1, 5, 1024, 256], "other": 5.656854249492381}, | ||
{"shape": [1, 5, 1200, 300], "other": 8.0}, | ||
{"shape": [1, 50257], "other": 0.9}, | ||
{"shape": [1, 512, 38, 38], "other": [1, 512, 38, 38]}, | ||
{"shape": [1, 512], "other": [1, 1]}, | ||
{"shape": [1, 512], "other": [1, 512]}, | ||
{"shape": [1, 64, 1280], "other": 1.0}, | ||
{"shape": [1, 64, 6144], "other": 3}, | ||
{"shape": [1, 64, 9, 9], "other": 8.0}, | ||
{"shape": [1, 640, 32, 32], "other": 1.0}, | ||
{"shape": [1, 8, 2048, 256], "other": 5.656854249492381}, | ||
{"shape": [1, 8, 256, 2048], "other": 5.656854249492381}, | ||
{"shape": [1, 8, 256, 256], "other": 5.656854249492381}, | ||
{"shape": [1, 8, 300, 300], "other": 8.0}, | ||
# {"shape": [1, s0, 256], "other": 0.5 }, | ||
{"shape": [10, 10], "other": 2.772588722239781}, | ||
{"shape": [10, 10], "other": 8}, | ||
{"shape": [10], "other": 10}, | ||
{"shape": [10], "other": 9.375}, | ||
{"shape": [128], "other": 128}, | ||
{"shape": [15, 15], "other": 2.772588722239781}, | ||
{"shape": [15, 15], "other": 8}, | ||
{"shape": [16, 6, 64, 32], "other": [16, 6, 64, 32]}, | ||
{"shape": [16, 8, 64, 32], "other": [16, 8, 64, 32]}, | ||
{"shape": [160], "other": 160}, | ||
{"shape": [17, 17], "other": 16}, | ||
{"shape": [17, 17], "other": 2.0794415416798357}, | ||
{"shape": [19], "other": 18.75}, | ||
{"shape": [1], "other": 1}, | ||
{"shape": [1], "other": 1.0}, | ||
{"shape": [2, 2], "other": 16}, | ||
{"shape": [2, 2], "other": 2.0794415416798357}, | ||
{"shape": [2, 512], "other": [2, 1]}, | ||
{"shape": [20], "other": 20}, | ||
{"shape": [2], "other": 2}, | ||
{"shape": [3, 320, 320], "other": [3, 1, 1]}, | ||
{"shape": [3, 480, 640], "other": [3, 1, 1]}, | ||
{"shape": [3234, 1], "other": 10.0}, | ||
{"shape": [3234, 1], "other": 5.0}, | ||
{"shape": [38], "other": 37.5}, | ||
{"shape": [3], "other": 3}, | ||
{"shape": [3], "other": 3.0}, | ||
{"shape": [4, 12, 64, 32], "other": [4, 12, 64, 32]}, | ||
{"shape": [4, 16, 64, 32], "other": [4, 16, 64, 32]}, | ||
{"shape": [5], "other": 4.6875}, | ||
{"shape": [5], "other": 5}, | ||
{"shape": [64, 3, 64, 32], "other": [64, 3, 64, 32]}, | ||
{"shape": [64, 4, 64, 32], "other": [64, 4, 64, 32]}, | ||
{"shape": [8, 100, 32], "other": 5.656854249492381}, | ||
{"shape": [8, 920, 32], "other": 5.656854249492381}, | ||
{"shape": [8732, 1], "other": 10.0}, | ||
{"shape": [8732, 1], "other": 5.0}, | ||
{"shape": [96, 80], "other": [80]}, | ||
{"shape": [], "other": []}, | ||
# {"shape": [s0 + 1, s0 + 1], "other": 16 }, | ||
# {"shape": [s0 + 1, s0 + 1], "other": 2.0794415416798357 }, | ||
], | ||
"input_a_dtype": [ttnn.bfloat16], | ||
"input_b_dtype": [ttnn.bfloat16], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_b_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"input_b_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def run( | ||
input_specs, | ||
input_a_dtype, | ||
input_b_dtype, | ||
input_a_layout, | ||
input_b_layout, | ||
input_a_memory_config, | ||
input_b_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
input_shape = input_specs["shape"] | ||
if len(input_shape) == 0: | ||
torch_input_tensor_a = torch.empty([]) | ||
else: | ||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype | ||
)(input_shape) | ||
|
||
other = input_specs["other"] | ||
if isinstance(other, (int, float)): | ||
torch_other_tensor = torch.tensor(other, dtype=torch.float32) | ||
elif len(other) == 0: | ||
torch_other_tensor = torch.empty([]) | ||
else: | ||
torch_other_tensor = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype | ||
)(other) | ||
|
||
golden_function = ttnn.get_golden_function(ttnn.divide) | ||
torch_output_tensor = golden_function(torch_input_tensor_a, torch_other_tensor) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
input_tensor_b = ttnn.from_torch( | ||
torch_other_tensor, | ||
dtype=input_b_dtype, | ||
layout=input_b_layout, | ||
device=device, | ||
memory_config=input_b_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
|
||
output_tensor = ttnn.divide(input_tensor_a, input_tensor_b, memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
|
||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |
73 changes: 73 additions & 0 deletions
73
tests/sweep_framework/sweeps/eltwise/binary/lt/lt_scalar_pytorch2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
|
||
parameters = { | ||
"nightly": { | ||
"input_specs": [ | ||
{"shape": [1, 1], "other": 16}, | ||
{"shape": [10, 10], "other": 8}, | ||
{"shape": [15, 15], "other": 8}, | ||
{"shape": [17, 17], "other": 16}, | ||
{"shape": [2, 2], "other": 16}, | ||
# {"shape": [s0 + 1, s0 + 1], "other": 16}, | ||
], | ||
"input_a_dtype": [ttnn.bfloat16], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def run( | ||
input_specs, | ||
input_a_dtype, | ||
input_a_layout, | ||
input_a_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype | ||
)(input_specs["shape"]) | ||
|
||
golden_function = ttnn.get_golden_function(ttnn.lt) | ||
torch_output_tensor = golden_function(torch_input_tensor_a, input_specs["other"]) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
output_tensor = ttnn.lt(input_tensor_a, input_specs["other"], memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |
80 changes: 80 additions & 0 deletions
80
tests/sweep_framework/sweeps/eltwise/binary/lt/lt_tensor_pytorch2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import assert_equal, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
# Override the default timeout in seconds for hang detection. | ||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
parameters = { | ||
"nightly": { | ||
"input_shape_a": [[1, 50257]], | ||
"input_shape_b": [[1, 1]], | ||
"input_a_dtype": [ttnn.bfloat16], | ||
"input_b_dtype": [ttnn.bfloat16], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_b_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"input_b_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def run( | ||
input_shape_a, | ||
input_shape_b, | ||
input_a_dtype, | ||
input_b_dtype, | ||
input_a_layout, | ||
input_b_layout, | ||
input_a_memory_config, | ||
input_b_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype | ||
)(input_shape_a) | ||
torch_input_tensor_b = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype | ||
)(input_shape_b) | ||
|
||
golden_function = ttnn.get_golden_function(ttnn.lt) | ||
torch_output_tensor = golden_function(torch_input_tensor_a, torch_input_tensor_b) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
input_tensor_b = ttnn.from_torch( | ||
torch_input_tensor_b, | ||
dtype=input_b_dtype, | ||
layout=input_b_layout, | ||
device=device, | ||
memory_config=input_b_memory_config, | ||
) | ||
start_time = start_measuring_time() | ||
result = ttnn.lt(input_tensor_a, input_tensor_b) | ||
output_tensor = ttnn.to_torch(result) | ||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [assert_equal(torch_output_tensor, output_tensor), e2e_perf] |
Oops, something went wrong.