Skip to content

Commit

Permalink
#13373: Add sweep test for maximum_pytorch2
Browse files Browse the repository at this point in the history
  • Loading branch information
mouliraj-mcw committed Oct 3, 2024
1 parent 0abd316 commit 9580621
Show file tree
Hide file tree
Showing 2 changed files with 96 additions and 0 deletions.
1 change: 1 addition & 0 deletions .github/workflows/ttnn-run-sweeps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ on:
- eltwise.composite.binary.subalpha.subalpha
- eltwise.composite.binary.minimum.minimum
- eltwise.composite.binary.maximum.maximum
- eltwise.composite.binary.maximum.maximum_pytorch2
- eltwise.ternary.addcmul.addcmul
- eltwise.ternary.addcdiv.addcdiv
- eltwise.ternary.mac.mac
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"maximum_1": {
"input_shape": [
[1, 16, 1, 60],
# [1,16,s10+1],
[1, 16, 19, 19],
[1, 16, 59, 59],
],
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_b_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_a_layout": [ttnn.TILE_LAYOUT],
"input_b_layout": [ttnn.TILE_LAYOUT],
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"input_b_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
},
}


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_a_dtype,
input_b_dtype,
input_a_layout,
input_b_layout,
input_a_memory_config,
input_b_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)
torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)

torch_input_tensor_b = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype
)(input_shape)

torch_output_tensor = torch.max(torch_input_tensor_a, torch_input_tensor_b)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_a_layout,
device=device,
memory_config=input_a_memory_config,
)

input_tensor_b = ttnn.from_torch(
torch_input_tensor_b,
dtype=input_b_dtype,
layout=input_b_layout,
device=device,
memory_config=input_b_memory_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.maximum(input_tensor_a, input_tensor_b, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(output_tensor)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]

0 comments on commit 9580621

Please sign in to comment.