Skip to content

Commit

Permalink
#13373: Add sweep test for tanh_pytorch2
Browse files Browse the repository at this point in the history
  • Loading branch information
mouliraj-mcw committed Oct 9, 2024
1 parent 45ead5e commit 4f7f1a6
Show file tree
Hide file tree
Showing 2 changed files with 91 additions and 0 deletions.
1 change: 1 addition & 0 deletions .github/workflows/ttnn-run-sweeps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ on:
- eltwise.unary.exp2.exp2
- eltwise.unary.expm1.expm1
- eltwise.unary.tanh.tanh
- eltwise.unary.tanh.tanh_pytorch2
- eltwise.unary.sign.sign
- eltwise.unary.rad2deg.rad2deg
- eltwise.unary.deg2rad.deg2rad
Expand Down
90 changes: 90 additions & 0 deletions tests/sweep_framework/sweeps/eltwise/unary/tanh/tanh_pytorch2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)

# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"tanh_1": {
"input_shape": [
[1, 1, 1024],
[1, 1, 24576],
[1, 1, 3072],
[1, 1, 4096],
[1, 12, 3072],
[1, 14, 3072],
[1, 15, 1024],
[1, 256, 96],
[1, 32, 6144],
[1, 45, 3072],
[1, 5, 4096],
[1, 7, 3072],
[1, 768],
[1, 9, 128],
[1, 9, 16384],
[1, 9, 3072],
[1, 9, 4096],
[1, 9, 8192],
],
"input_a_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_a_layout": [ttnn.TILE_LAYOUT],
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
},
}


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a device_mesh_fixture above, the object you yielded will be passed into this function as 'device'. Otherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
input_a_dtype,
input_a_layout,
input_a_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)
torch_output_tensor = torch.tanh(torch_input_tensor_a)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_a_layout,
device=device,
memory_config=input_a_memory_config,
)

start_time = start_measuring_time()
result = ttnn.tanh(input_tensor_a, memory_config=output_memory_config)
output_tensor = ttnn.to_torch(result)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]

0 comments on commit 4f7f1a6

Please sign in to comment.