Skip to content

Commit

Permalink
#8142: Add documentation for log alike ops
Browse files Browse the repository at this point in the history
  • Loading branch information
mouliraj-mcw committed Oct 23, 2024
1 parent fb2057d commit 49ff8cb
Show file tree
Hide file tree
Showing 5 changed files with 56 additions and 38 deletions.
9 changes: 1 addition & 8 deletions tests/sweep_framework/sweeps/eltwise/unary/log10/log10.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,19 +6,13 @@
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)

# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
Expand Down Expand Up @@ -49,8 +43,7 @@ def run(
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)
torch.manual_seed(0)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=1, high=100, dtype=torch.float32), input_a_dtype
Expand Down
9 changes: 1 addition & 8 deletions tests/sweep_framework/sweeps/eltwise/unary/log1p/log1p.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,19 +6,13 @@
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)

# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
Expand Down Expand Up @@ -49,8 +43,7 @@ def run(
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)
torch.manual_seed(0)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=1, high=100, dtype=torch.float32), input_a_dtype
Expand Down
9 changes: 1 addition & 8 deletions tests/sweep_framework/sweeps/eltwise/unary/log2/log2.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,19 +6,13 @@
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)

# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
Expand Down Expand Up @@ -49,8 +43,7 @@ def run(
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)
torch.manual_seed(0)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=1, high=100, dtype=torch.float32), input_a_dtype
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,19 +6,13 @@
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)

# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs.
Expand Down Expand Up @@ -49,8 +43,7 @@ def run(
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)
torch.manual_seed(0)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=-4, high=10, dtype=torch.float32), input_a_dtype
Expand Down
58 changes: 52 additions & 6 deletions ttnn/cpp/ttnn/operations/eltwise/unary/unary_pybind.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -810,7 +810,7 @@ void bind_power(py::module& module, const unary_operation_t& operation, const st
}

template <typename unary_operation_t>
void bind_unary_composite(py::module& module, const unary_operation_t& operation, const std::string& description, const std::string& range = "") {
void bind_unary_composite(py::module& module, const unary_operation_t& operation, const std::string& description, const std::string& range = "", const std::string& info_doc = "") {
auto doc = fmt::format(
R"doc(
{2}
Expand All @@ -824,14 +824,18 @@ void bind_unary_composite(py::module& module, const unary_operation_t& operation
Returns:
ttnn.Tensor: the output tensor.
Note:
{4}
Example:
>>> tensor = ttnn.from_torch(torch.tensor((1, 2), dtype=torch.bfloat16), device=device)
>>> output = {1}(tensor)
)doc",
operation.base_name(),
operation.python_fully_qualified_name(),
description,
range);
range,
info_doc);

bind_registered_operation(
module,
Expand Down Expand Up @@ -1472,8 +1476,32 @@ void py_module(py::module& module) {
)doc");

detail::bind_unary_operation(module, ttnn::log, R"doc(\mathrm{{output\_tensor}}_i = log(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::log10, R"doc(\mathrm{{output\_tensor}}_i = log10(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::log2, R"doc(\mathrm{{output\_tensor}}_i = log2(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::log10, R"doc(\mathrm{{output\_tensor}}_i = log10(\mathrm{{input\_tensor}}_i))doc",
R"doc(Supported dtypes, layouts, and ranks:
+----------------------------+---------------------------------+-------------------+
| Dtypes | Layouts | Ranks |
+----------------------------+---------------------------------+-------------------+
| BFLOAT16, BFLOAT8_B | TILE | 2, 3, 4 |
+----------------------------+---------------------------------+-------------------+
BFLOAT8_B supported only in WHB0.
)doc");

detail::bind_unary_operation(module, ttnn::log2, R"doc(\mathrm{{output\_tensor}}_i = log2(\mathrm{{input\_tensor}}_i))doc",
R"doc(Supported dtypes, layouts, and ranks:
+----------------------------+---------------------------------+-------------------+
| Dtypes | Layouts | Ranks |
+----------------------------+---------------------------------+-------------------+
| BFLOAT16, BFLOAT8_B | TILE | 2, 3, 4 |
+----------------------------+---------------------------------+-------------------+
BFLOAT8_B supported only in WHB0.
)doc");

detail::bind_unary_operation(module, ttnn::logical_not, R"doc(\mathrm{{output\_tensor}}_i = \mathrm{{!input\_tensor_i}})doc", R"doc(Supports bfloat16 dtype and both TILE and ROW_MAJOR layout)doc");
detail::bind_unary_operation(module, ttnn::ltz, R"doc(\mathrm{{output\_tensor}}_i = (\mathrm{{input\_tensor_i\ < 0}}))doc",
R"doc(Supported dtypes, layouts, and ranks:
Expand Down Expand Up @@ -1517,7 +1545,16 @@ void py_module(py::module& module) {
detail::bind_unary_operation(module, ttnn::square, R"doc(\mathrm{{output\_tensor}}_i = square(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::tan, R"doc(\mathrm{{output\_tensor}}_i = tan(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::tanh, R"doc(\mathrm{{output\_tensor}}_i = tanh(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::log_sigmoid, R"doc(\mathrm{{output\_tensor}}_i = \verb|log_sigmoid|(\mathrm{{input\_tensor}}_i))doc");
detail::bind_unary_operation(module, ttnn::log_sigmoid, R"doc(\mathrm{{output\_tensor}}_i = \verb|log_sigmoid|(\mathrm{{input\_tensor}}_i))doc",
R"doc(Supported dtypes, layouts, and ranks:
+----------------------------+---------------------------------+-------------------+
| Dtypes | Layouts | Ranks |
+----------------------------+---------------------------------+-------------------+
| BFLOAT16, BFLOAT8_B | TILE | 2, 3, 4 |
+----------------------------+---------------------------------+-------------------+
)doc");
detail::bind_unary_operation(module, ttnn::bitwise_not, R"doc(\mathrm{{output\_tensor}}_i = \verb|bitwise_not|(\mathrm{{input\_tensor}}_i))doc", "Input tensor needs to be in the range [-2147483647, 2147483647], INT32 dtype. Support provided only for Wormhole_B0.");

// Unaries with fast_and_approximate_mode
Expand Down Expand Up @@ -1690,7 +1727,16 @@ void py_module(py::module& module) {
detail::bind_unary_composite(module, ttnn::cosh, R"doc(Performs cosh function on :attr:`input_tensor`.)doc", "[supported range -9 to 9]");
detail::bind_unary_composite(module, ttnn::digamma, R"doc(Performs digamma function on :attr:`input_tensor`.)doc", "[supported for value greater than 0]");
detail::bind_unary_composite(module, ttnn::lgamma, R"doc(Performs lgamma function on :attr:`input_tensor`.)doc", "[supported for value greater than 0]");
detail::bind_unary_composite(module, ttnn::log1p, R"doc(Performs log1p function on :attr:`input_tensor`.)doc", "[supported range -1 to 1]");
detail::bind_unary_composite(module, ttnn::log1p, R"doc(Performs log1p function on :attr:`input_tensor`.)doc", "[supported range -1 to 1]",
R"doc(Supported dtypes, layouts, and ranks:
+----------------------------+---------------------------------+-------------------+
| Dtypes | Layouts | Ranks |
+----------------------------+---------------------------------+-------------------+
| BFLOAT16 | TILE | 2, 3, 4 |
+----------------------------+---------------------------------+-------------------+
)doc");
detail::bind_unary_composite(module, ttnn::mish, R"doc(Performs mish function on :attr:`input_tensor`, not supported for grayskull.)doc");
detail::bind_unary_composite(module, ttnn::multigammaln, R"doc(Performs multigammaln function on :attr:`input_tensor`.)doc", "[supported range 1.6 to inf]");
detail::bind_unary_composite(module, ttnn::sinh, R"doc(Performs sinh function on :attr:`input_tensor`.)doc", "[supported range -88 to 88]");
Expand Down

0 comments on commit 49ff8cb

Please sign in to comment.