forked from pai-disc/torch-mlir
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MHLO] Init MHLO slice like op patterns (llvm#1091)
See RFC: llvm#999 Co-authored-by: Bairen Yi [email protected] Co-authored-by: Jiawei Wu [email protected] Co-authored-by: Tianyou Guo [email protected] Co-authored-by: Xu Yan [email protected] Co-authored-by: Ziheng Jiang [email protected]
- Loading branch information
Tanyo Kwok
committed
Jul 22, 2022
1 parent
9de1c66
commit f2f4b29
Showing
5 changed files
with
555 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,249 @@ | ||
//===----------------------------------------------------------------------===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// Also available under a BSD-style license. See LICENSE. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h" | ||
|
||
#include "../PassDetail.h" | ||
#include "./PopulatePatterns.h" | ||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" | ||
#include "mlir/Dialect/Tensor/IR/Tensor.h" | ||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" | ||
#include "torch-mlir/Conversion/Utils/Utils.h" | ||
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" | ||
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h" | ||
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" | ||
|
||
using namespace mlir; | ||
using namespace mlir::torch; | ||
using namespace mlir::torch::Torch; | ||
|
||
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32 | ||
static constexpr size_t kMhloDimSizeBits = 32; | ||
#else | ||
static constexpr size_t kMhloDimSizeBits = 64; | ||
#endif | ||
|
||
namespace { | ||
|
||
SmallVector<Value, 4> getDimSizesOfTensor( | ||
PatternRewriter& rewriter, | ||
Operation* op, | ||
Value value) { | ||
auto valueTy = value.getType().dyn_cast<RankedTensorType>(); | ||
if (!valueTy) { | ||
op->emitOpError("getDimSizesOfTensor(): the input is not a ranked tensor"); | ||
return {}; | ||
} | ||
|
||
auto rank = valueTy.getRank(); | ||
if (rank == 0) { | ||
return {}; | ||
} | ||
|
||
SmallVector<Value, 4> dimSizes; | ||
dimSizes.reserve(rank); | ||
auto loc = op->getLoc(); | ||
for (auto d = 0; d < rank; ++d) { | ||
dimSizes.emplace_back(rewriter.create<arith::IndexCastOp>( | ||
loc, | ||
rewriter.getIntegerType(kMhloDimSizeBits), | ||
rewriter.create<tensor::DimOp>(loc, value, d))); | ||
} | ||
return dimSizes; | ||
} | ||
|
||
// A dimension index from torch.dialect might outside the range [0, dimSize]. | ||
// The function is used to normalize the input index into the range. | ||
Value getNormalizedDimSizeInternal( | ||
PatternRewriter& rewriter, | ||
Operation* op, | ||
Value index, | ||
Value dimSize) { | ||
auto loc = op->getLoc(); | ||
Value zero = rewriter.create<arith::ConstantOp>( | ||
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 0)); | ||
|
||
// To normalize index into range [-dimSize, dimSize] | ||
// index = min(max(-dimSize, index), dimSize) | ||
auto negDimSize = rewriter.create<arith::SubIOp>(loc, zero, dimSize); | ||
index = rewriter.create<arith::MaxSIOp>(loc, negDimSize, index); | ||
index = rewriter.create<arith::MinSIOp>(loc, dimSize, index); | ||
|
||
auto dimSizePlusIndex = rewriter.create<arith::AddIOp>(loc, dimSize, index); | ||
auto indexPositive = rewriter.create<arith::CmpIOp>( | ||
loc, arith::CmpIPredicate::sge, index, zero); | ||
// get positive index: (index >=0) ? index: index + dimSize | ||
return rewriter.create<arith::SelectOp>( | ||
loc, indexPositive, index, dimSizePlusIndex); | ||
} | ||
|
||
Value getDynamicSliceInternal( | ||
PatternRewriter& rewriter, | ||
Operation* op, | ||
Value input, | ||
Value startIndex, | ||
Value endIndex, | ||
Value step, | ||
size_t dimIndex, | ||
ArrayRef<Value> dimSizes) { | ||
auto loc = op->getLoc(); | ||
// startIndex & endIndex has been normailized into range [0, dSize] | ||
Type intType = rewriter.getIntegerType(kMhloDimSizeBits); | ||
Value zero = rewriter.create<arith::ConstantOp>( | ||
loc, rewriter.getIntegerAttr(intType, 0)); | ||
Value one = rewriter.create<arith::ConstantOp>( | ||
loc, rewriter.getIntegerAttr(intType, 1)); | ||
|
||
SmallVector<Value, 4> startIndices; | ||
SmallVector<Value, 4> endIndices; | ||
SmallVector<Value, 4> strides; | ||
|
||
auto inputTy = input.getType().dyn_cast<RankedTensorType>(); | ||
size_t rank = inputTy.getRank(); | ||
startIndices.reserve(rank); | ||
endIndices.reserve(rank); | ||
strides.reserve(rank); | ||
|
||
auto endIndexIsZero = rewriter.create<arith::CmpIOp>( | ||
loc, arith::CmpIPredicate::eq, endIndex, zero); | ||
endIndex = rewriter.create<arith::SelectOp>( | ||
loc, endIndexIsZero, dimSizes[dimIndex], endIndex); | ||
|
||
for (size_t r = 0; r < rank; ++r) { | ||
if (r == dimIndex) { | ||
startIndices.push_back(startIndex); | ||
endIndices.push_back(endIndex); | ||
strides.push_back(step); | ||
} else { | ||
startIndices.push_back(zero); | ||
endIndices.push_back(dimSizes[r]); | ||
strides.push_back(one); | ||
} | ||
} | ||
|
||
auto startTensor = | ||
rewriter.create<tensor::FromElementsOp>(loc, startIndices).getResult(); | ||
auto endTensor = | ||
rewriter.create<tensor::FromElementsOp>(loc, endIndices).getResult(); | ||
auto stridesTensor = | ||
rewriter.create<tensor::FromElementsOp>(loc, strides).getResult(); | ||
|
||
auto inputShape = inputTy.getShape(); | ||
SmallVector<int64_t, 4> sliceShape(inputShape.begin(), inputShape.end()); | ||
sliceShape[dimIndex] = ShapedType::kDynamicSize; | ||
auto sliceoutputTy = | ||
RankedTensorType::get(sliceShape, inputTy.getElementType()); | ||
return rewriter.create<mhlo::RealDynamicSliceOp>( | ||
loc, sliceoutputTy, input, startTensor, endTensor, stridesTensor); | ||
} | ||
|
||
// Get a dynamic slice of the tensor from startIndex to endIndex with stride step | ||
// on the specifed dimension. The input startIndex(default to 0), | ||
// endIndex(default to dimSize), and step(default to 1) can be optional. | ||
Value getDynamicSlice( | ||
PatternRewriter& rewriter, | ||
Operation* op, | ||
Value input, | ||
llvm::Optional<Value> startIndexOpt, | ||
llvm::Optional<Value> endIndexOpt, | ||
llvm::Optional<Value> stepOpt, | ||
int64_t dim) { | ||
auto loc = op->getLoc(); | ||
auto inputTy = input.getType().dyn_cast<RankedTensorType>(); | ||
auto rank = inputTy.getRank(); | ||
|
||
dim = (dim + rank) % rank; | ||
Value dimSize = rewriter.create<arith::IndexCastOp>( | ||
loc, | ||
rewriter.getI64Type(), | ||
rewriter.create<tensor::DimOp>(loc, input, dim)); | ||
|
||
Value normStartIndex = startIndexOpt | ||
? getNormalizedDimSizeInternal(rewriter, op, *startIndexOpt, dimSize) | ||
: rewriter.create<arith::ConstantOp>( | ||
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 0)); | ||
Value normEndIndex = endIndexOpt | ||
? getNormalizedDimSizeInternal(rewriter, op, *endIndexOpt, dimSize) | ||
: dimSize; | ||
Value step = stepOpt | ||
? *stepOpt | ||
: rewriter.create<arith::ConstantOp>( | ||
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 1)); | ||
|
||
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32 | ||
auto i32Type = rewriter.getIntegerType(kMhloDimSizeBits); | ||
normStartIndex = | ||
rewriter.create<arith::TruncIOp>(loc, i32Type, normStartIndex); | ||
normEndIndex = | ||
rewriter.create<arith::TruncIOp>(loc, i32Type, normEndIndex); | ||
step = rewriter.create<arith::TruncIOp>(loc, i32Type, step); | ||
#endif | ||
auto dimSizes = getDimSizesOfTensor(rewriter, op, input); | ||
|
||
return getDynamicSliceInternal( | ||
rewriter, op, input, normStartIndex, normEndIndex, step, dim, dimSizes); | ||
} | ||
|
||
template <typename AtenOpT> | ||
class ConvertAtenOp : public OpConversionPattern<AtenOpT> { | ||
public: | ||
using OpConversionPattern<AtenOpT>::OpConversionPattern; | ||
using OpAdaptor = typename AtenOpT::Adaptor; | ||
LogicalResult | ||
matchAndRewrite(AtenOpT op, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override; | ||
}; | ||
|
||
template <> | ||
LogicalResult ConvertAtenOp<AtenSliceTensorOp>::matchAndRewrite( | ||
AtenSliceTensorOp op, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter& rewriter) const { | ||
auto self = adaptor.self(); | ||
auto selfTy = self.getType().template cast<RankedTensorType>(); | ||
if (!selfTy) | ||
return op.emitError("Only ranked tensor types supported in MHLO Rsub"); | ||
int64_t dim; | ||
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim))) | ||
return rewriter.notifyMatchFailure( | ||
op, "Only constant dim is currently supported"); | ||
|
||
auto getOptionalVal = [&](Value val) -> llvm::Optional<Value> { | ||
if (val.getType().isa<Torch::NoneType>()) { | ||
return llvm::None; | ||
} else { | ||
return val; | ||
} | ||
}; | ||
|
||
llvm::Optional<Value> start = getOptionalVal(adaptor.start()); | ||
llvm::Optional<Value> end = getOptionalVal(adaptor.end()); | ||
llvm::Optional<Value> step = getOptionalVal(adaptor.step()); | ||
|
||
Value sliced = | ||
getDynamicSlice(rewriter, op, self, start, end, step, dim); | ||
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>( | ||
op, getTypeConverter()->convertType(op.getType()), sliced); | ||
|
||
return success(); | ||
} | ||
} // namespace | ||
|
||
void mlir::torch::torch_to_mhlo::populateSliceLikeOpPatternsAndLegality( | ||
TypeConverter &typeConverter, RewritePatternSet &patterns, | ||
ConversionTarget &target) { | ||
MLIRContext *context = patterns.getContext(); | ||
|
||
#define INSERT_ATENOP_PATTERN(AtenOp) \ | ||
target.addIllegalOp<AtenOp>(); \ | ||
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context); | ||
INSERT_ATENOP_PATTERN(AtenSliceTensorOp); | ||
#undef INSERT_ATENOP_PATTERN | ||
|
||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.