Skip to content

Commit

Permalink
[MHLO] Init MHLO slice like op patterns (llvm#1091)
Browse files Browse the repository at this point in the history
See RFC: llvm#999

Co-authored-by: Bairen Yi [email protected]
Co-authored-by: Jiawei Wu [email protected]
Co-authored-by: Tianyou Guo [email protected]
Co-authored-by: Xu Yan [email protected]
Co-authored-by: Ziheng Jiang [email protected]
  • Loading branch information
Tanyo Kwok committed Jul 22, 2022
1 parent 9de1c66 commit f2f4b29
Show file tree
Hide file tree
Showing 5 changed files with 555 additions and 0 deletions.
1 change: 1 addition & 0 deletions lib/Conversion/TorchToMhlo/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ add_mlir_conversion_library(TorchMLIRTorchToMhlo
TorchToMhlo.cpp
MhloLegalizeUtils.cpp
BasicOp.cpp
SliceLikeOps.cpp

ADDITIONAL_HEADER_DIRS
${PROJECT_SOURCE_DIR}/include/torch-mlir/Conversion/TorchToMhlo
Expand Down
4 changes: 4 additions & 0 deletions lib/Conversion/TorchToMhlo/PopulatePatterns.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,10 @@ namespace torch_to_mhlo {
void populateBasicOpPatternsAndLegality(TypeConverter &typeConverter,
RewritePatternSet &patterns,
ConversionTarget &target);
void populateSliceLikeOpPatternsAndLegality(TypeConverter &typeConverter,
RewritePatternSet &patterns,
ConversionTarget &target);


} // namespace torch_to_mhlo
} // namespace torch
Expand Down
249 changes: 249 additions & 0 deletions lib/Conversion/TorchToMhlo/SliceLikeOps.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,249 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//

#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"

#include "../PassDetail.h"
#include "./PopulatePatterns.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"

using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;

#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
static constexpr size_t kMhloDimSizeBits = 32;
#else
static constexpr size_t kMhloDimSizeBits = 64;
#endif

namespace {

SmallVector<Value, 4> getDimSizesOfTensor(
PatternRewriter& rewriter,
Operation* op,
Value value) {
auto valueTy = value.getType().dyn_cast<RankedTensorType>();
if (!valueTy) {
op->emitOpError("getDimSizesOfTensor(): the input is not a ranked tensor");
return {};
}

auto rank = valueTy.getRank();
if (rank == 0) {
return {};
}

SmallVector<Value, 4> dimSizes;
dimSizes.reserve(rank);
auto loc = op->getLoc();
for (auto d = 0; d < rank; ++d) {
dimSizes.emplace_back(rewriter.create<arith::IndexCastOp>(
loc,
rewriter.getIntegerType(kMhloDimSizeBits),
rewriter.create<tensor::DimOp>(loc, value, d)));
}
return dimSizes;
}

// A dimension index from torch.dialect might outside the range [0, dimSize].
// The function is used to normalize the input index into the range.
Value getNormalizedDimSizeInternal(
PatternRewriter& rewriter,
Operation* op,
Value index,
Value dimSize) {
auto loc = op->getLoc();
Value zero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 0));

// To normalize index into range [-dimSize, dimSize]
// index = min(max(-dimSize, index), dimSize)
auto negDimSize = rewriter.create<arith::SubIOp>(loc, zero, dimSize);
index = rewriter.create<arith::MaxSIOp>(loc, negDimSize, index);
index = rewriter.create<arith::MinSIOp>(loc, dimSize, index);

auto dimSizePlusIndex = rewriter.create<arith::AddIOp>(loc, dimSize, index);
auto indexPositive = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, index, zero);
// get positive index: (index >=0) ? index: index + dimSize
return rewriter.create<arith::SelectOp>(
loc, indexPositive, index, dimSizePlusIndex);
}

Value getDynamicSliceInternal(
PatternRewriter& rewriter,
Operation* op,
Value input,
Value startIndex,
Value endIndex,
Value step,
size_t dimIndex,
ArrayRef<Value> dimSizes) {
auto loc = op->getLoc();
// startIndex & endIndex has been normailized into range [0, dSize]
Type intType = rewriter.getIntegerType(kMhloDimSizeBits);
Value zero = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 0));
Value one = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(intType, 1));

SmallVector<Value, 4> startIndices;
SmallVector<Value, 4> endIndices;
SmallVector<Value, 4> strides;

auto inputTy = input.getType().dyn_cast<RankedTensorType>();
size_t rank = inputTy.getRank();
startIndices.reserve(rank);
endIndices.reserve(rank);
strides.reserve(rank);

auto endIndexIsZero = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, endIndex, zero);
endIndex = rewriter.create<arith::SelectOp>(
loc, endIndexIsZero, dimSizes[dimIndex], endIndex);

for (size_t r = 0; r < rank; ++r) {
if (r == dimIndex) {
startIndices.push_back(startIndex);
endIndices.push_back(endIndex);
strides.push_back(step);
} else {
startIndices.push_back(zero);
endIndices.push_back(dimSizes[r]);
strides.push_back(one);
}
}

auto startTensor =
rewriter.create<tensor::FromElementsOp>(loc, startIndices).getResult();
auto endTensor =
rewriter.create<tensor::FromElementsOp>(loc, endIndices).getResult();
auto stridesTensor =
rewriter.create<tensor::FromElementsOp>(loc, strides).getResult();

auto inputShape = inputTy.getShape();
SmallVector<int64_t, 4> sliceShape(inputShape.begin(), inputShape.end());
sliceShape[dimIndex] = ShapedType::kDynamicSize;
auto sliceoutputTy =
RankedTensorType::get(sliceShape, inputTy.getElementType());
return rewriter.create<mhlo::RealDynamicSliceOp>(
loc, sliceoutputTy, input, startTensor, endTensor, stridesTensor);
}

// Get a dynamic slice of the tensor from startIndex to endIndex with stride step
// on the specifed dimension. The input startIndex(default to 0),
// endIndex(default to dimSize), and step(default to 1) can be optional.
Value getDynamicSlice(
PatternRewriter& rewriter,
Operation* op,
Value input,
llvm::Optional<Value> startIndexOpt,
llvm::Optional<Value> endIndexOpt,
llvm::Optional<Value> stepOpt,
int64_t dim) {
auto loc = op->getLoc();
auto inputTy = input.getType().dyn_cast<RankedTensorType>();
auto rank = inputTy.getRank();

dim = (dim + rank) % rank;
Value dimSize = rewriter.create<arith::IndexCastOp>(
loc,
rewriter.getI64Type(),
rewriter.create<tensor::DimOp>(loc, input, dim));

Value normStartIndex = startIndexOpt
? getNormalizedDimSizeInternal(rewriter, op, *startIndexOpt, dimSize)
: rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 0));
Value normEndIndex = endIndexOpt
? getNormalizedDimSizeInternal(rewriter, op, *endIndexOpt, dimSize)
: dimSize;
Value step = stepOpt
? *stepOpt
: rewriter.create<arith::ConstantOp>(
loc, rewriter.getIntegerAttr(rewriter.getI64Type(), 1));

#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32
auto i32Type = rewriter.getIntegerType(kMhloDimSizeBits);
normStartIndex =
rewriter.create<arith::TruncIOp>(loc, i32Type, normStartIndex);
normEndIndex =
rewriter.create<arith::TruncIOp>(loc, i32Type, normEndIndex);
step = rewriter.create<arith::TruncIOp>(loc, i32Type, step);
#endif
auto dimSizes = getDimSizesOfTensor(rewriter, op, input);

return getDynamicSliceInternal(
rewriter, op, input, normStartIndex, normEndIndex, step, dim, dimSizes);
}

template <typename AtenOpT>
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};

template <>
LogicalResult ConvertAtenOp<AtenSliceTensorOp>::matchAndRewrite(
AtenSliceTensorOp op,
OpAdaptor adaptor,
ConversionPatternRewriter& rewriter) const {
auto self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in MHLO Rsub");
int64_t dim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(
op, "Only constant dim is currently supported");

auto getOptionalVal = [&](Value val) -> llvm::Optional<Value> {
if (val.getType().isa<Torch::NoneType>()) {
return llvm::None;
} else {
return val;
}
};

llvm::Optional<Value> start = getOptionalVal(adaptor.start());
llvm::Optional<Value> end = getOptionalVal(adaptor.end());
llvm::Optional<Value> step = getOptionalVal(adaptor.step());

Value sliced =
getDynamicSlice(rewriter, op, self, start, end, step, dim);
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>(
op, getTypeConverter()->convertType(op.getType()), sliced);

return success();
}
} // namespace

void mlir::torch::torch_to_mhlo::populateSliceLikeOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
MLIRContext *context = patterns.getContext();

#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
INSERT_ATENOP_PATTERN(AtenSliceTensorOp);
#undef INSERT_ATENOP_PATTERN

}
3 changes: 3 additions & 0 deletions lib/Conversion/TorchToMhlo/TorchToMhlo.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,9 @@ class ConvertTorchToMhlo : public ConvertTorchToMhloBase<ConvertTorchToMhlo> {

torch_to_mhlo::populateBasicOpPatternsAndLegality(typeConverter, patterns,
target);
torch_to_mhlo::populateSliceLikeOpPatternsAndLegality(typeConverter, patterns,
target);

if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
return signalPassFailure();
Expand Down
Loading

0 comments on commit f2f4b29

Please sign in to comment.