forked from pai-disc/torch-mlir
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MHLO] Init MHLO view like op patterns
See RFC: llvm#999 Co-authored-by: Bairen Yi [email protected] Co-authored-by: Jiawei Wu [email protected] Co-authored-by: Tianyou Guo [email protected] Co-authored-by: Xu Yan [email protected] Co-authored-by: Ziheng Jiang [email protected]
- Loading branch information
Tanyo Kwok
committed
Jul 22, 2022
1 parent
f2f4b29
commit c774f0f
Showing
6 changed files
with
257 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
//===----------------------------------------------------------------------===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// Also available under a BSD-style license. See LICENSE. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h" | ||
|
||
#include "../PassDetail.h" | ||
#include "./PopulatePatterns.h" | ||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" | ||
#include "mlir/Dialect/Tensor/IR/Tensor.h" | ||
#include "mlir-hlo/Dialect/mhlo/IR/chlo_ops.h" | ||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" | ||
#include "torch-mlir/Conversion/Utils/Utils.h" | ||
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" | ||
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h" | ||
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h" | ||
#include "torch-mlir/Dialect/Torch/Utils/Utils.h" | ||
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h" | ||
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" | ||
#include <numeric> | ||
|
||
using namespace mlir; | ||
using namespace mlir::torch; | ||
using namespace mlir::torch::Torch; | ||
using namespace mlir::torch::TorchConversion; | ||
|
||
|
||
namespace { | ||
|
||
// This defines a template to construct ops whose legalizations are | ||
// specialized. | ||
template <typename AtenOpT> | ||
class ConvertAtenViewOp : public OpConversionPattern<AtenOpT> { | ||
public: | ||
using OpConversionPattern<AtenOpT>::OpConversionPattern; | ||
using OpAdaptor = typename AtenOpT::Adaptor; | ||
|
||
LogicalResult matchAndRewrite( | ||
AtenOpT op, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter& rewriter) const override { | ||
auto rankType = | ||
adaptor.self().getType().template dyn_cast<RankedTensorType>(); | ||
if (!rankType) | ||
return op.emitError("Only ranked tensor types are currently supported"); | ||
|
||
SmallVector<Value, 4> dimSizes; | ||
if (!getAtenViewOpSizes(op, adaptor, rewriter, dimSizes)) { | ||
return op.emitError("Dims size must be a list of Scalar"); | ||
} | ||
|
||
auto loc = op.getLoc(); | ||
auto newRank = dimSizes.size(); | ||
if (newRank == 0 || rankType.getRank() == 0) { | ||
rewriter.replaceOpWithNewOp<mhlo::ReshapeOp>( | ||
op, | ||
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType( | ||
op.getType()), | ||
adaptor.self()); | ||
return success(); | ||
} | ||
|
||
std::for_each(dimSizes.begin(), dimSizes.end(), [&](Value& dSize) { | ||
dSize = rewriter.create<ToI64Op>(loc, dSize).getResult(); | ||
return dSize; | ||
}); | ||
|
||
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32 | ||
// The i64 calculation is much slower than i32 on some devices, such as Nvidia GPU. | ||
// One can truncate from i64 to i32 since dimension sizes are unlikely to exceed | ||
// the range of i32(4GiB) | ||
std::for_each(dimSizes.begin(), dimSizes.end(), [&](Value& dSize) { | ||
// dimSize: cast i64 -> i32 | ||
dSize = rewriter.create<arith::TruncIOp>(loc, rewriter.getI32Type(), dSize); | ||
return dSize; | ||
}); | ||
#endif | ||
|
||
Value mhloShape = rewriter.create<tensor::FromElementsOp>(loc, dimSizes); | ||
rewriter.replaceOpWithNewOp<chlo::DynamicReshapeOp>( | ||
op, | ||
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType( | ||
op.getType()), | ||
adaptor.self(), | ||
mhloShape); | ||
return success(); | ||
} | ||
|
||
bool getAtenViewOpSizes( | ||
AtenOpT op, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter& rewriter, | ||
SmallVector<Value, 4>& dimSizes) const; | ||
}; | ||
|
||
template <> | ||
bool ConvertAtenViewOp<AtenViewOp>::getAtenViewOpSizes( | ||
AtenViewOp op, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter& rewriter, | ||
SmallVector<Value, 4>& dimSizes) const { | ||
return getListConstructElements(adaptor.size(), dimSizes); | ||
} | ||
|
||
template <> | ||
bool ConvertAtenViewOp<AtenReshapeOp>::getAtenViewOpSizes( | ||
AtenReshapeOp op, | ||
OpAdaptor adaptor, | ||
ConversionPatternRewriter& rewriter, | ||
SmallVector<Value, 4>& dimSizes) const { | ||
return getListConstructElements(adaptor.shape(), dimSizes); | ||
} | ||
|
||
} // namespace | ||
|
||
void mlir::torch::torch_to_mhlo::populateViewLikeOpPatternsAndLegality( | ||
TypeConverter &typeConverter, RewritePatternSet &patterns, | ||
ConversionTarget &target) { | ||
MLIRContext *context = patterns.getContext(); | ||
|
||
#define INSERT_VIEW_OP_PATTERN(AtenOp) \ | ||
target.addIllegalOp<AtenOp>(); \ | ||
patterns.add<ConvertAtenViewOp<AtenOp>>(typeConverter, context); | ||
INSERT_VIEW_OP_PATTERN(AtenViewOp); | ||
INSERT_VIEW_OP_PATTERN(AtenReshapeOp); | ||
#undef INSERT_VIEW_OP_PATTERN | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
// RUN: torch-mlir-opt <%s -convert-torch-to-mhlo -split-input-file -verify-diagnostics | FileCheck %s | ||
|
||
// CHECK-LABEL: func.func @torch.aten.view$view_like( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,224],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor<?x?x?x?xf32> | ||
// CHECK: %[[INT:.*]]-1 = torch.constant.int -1 | ||
// CHECK: %[[INT224:.*]] = torch.constant.int 224 | ||
// CHECK: %[[T1:.*]] = torch.prim.ListConstruct %[[INT]]-1, %[[INT]]224 : (!torch.int, !torch.int) -> !torch.list<int> | ||
// CHECK: %[[T2:.*]] = torch_c.to_i64 %[[INT]]-1 | ||
// CHECK: %[[T3:.*]] = torch_c.to_i64 %[[INT224]] | ||
// CHECK: %[[T4:.*]] = arith.trunci %[[T2]] : i64 to i32 | ||
// CHECK: %[[T5:.*]] = arith.trunci %[[T3]] : i64 to i32 | ||
// CHECK: %[[T6:.*]] = tensor.from_elements %[[T4]], %[[T5]] : tensor<2xi32> | ||
// CHECK: %[[T7:.*]] = "chlo.dynamic_reshape"(%[[T0]], %[[T6]]) : (tensor<?x?x?x?xf32>, tensor<2xi32>) -> tensor<?x224xf32> | ||
// CHECK: %[[T8:.*]] = torch_c.from_builtin_tensor %[[T7]] : tensor<?x224xf32> -> !torch.vtensor<[?,224],f32> | ||
// CHECK: return %[[T8]] : !torch.vtensor<[?,224],f32> | ||
func.func @torch.aten.view$view_like(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,224],f32> { | ||
%int-1 = torch.constant.int -1 | ||
%int224 = torch.constant.int 224 | ||
%0 = torch.prim.ListConstruct %int-1, %int224 : (!torch.int, !torch.int) -> !torch.list<int> | ||
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[?,?,?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,224],f32> | ||
return %1 : !torch.vtensor<[?,224],f32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @torch.aten.reshape$view_like( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?,?],f32>) -> !torch.vtensor<[?,120,4,64],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?,?],f32> -> tensor<?x?x?x?x?xf32> | ||
// CHECK: %[[INT:.*]]-1 = torch.constant.int -1 | ||
// CHECK: %[[INT120:.*]] = torch.constant.int 120 | ||
// CHECK: %[[INT4:.*]] = torch.constant.int 4 | ||
// CHECK: %[[INT64:.*]] = torch.constant.int 64 | ||
// CHECK: %[[T1:.*]] = torch.prim.ListConstruct %[[INT]]-1, %[[INT]]120, %[[INT]]4, %[[INT]]64 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int> | ||
// CHECK: %[[T2:.*]] = torch_c.to_i64 %[[INT]]-1 | ||
// CHECK: %[[T3:.*]] = torch_c.to_i64 %[[INT120]] | ||
// CHECK: %[[T4:.*]] = torch_c.to_i64 %[[INT4]] | ||
// CHECK: %[[T5:.*]] = torch_c.to_i64 %[[INT64]] | ||
// CHECK: %[[T6:.*]] = arith.trunci %[[T2]] : i64 to i32 | ||
// CHECK: %[[T7:.*]] = arith.trunci %[[T3]] : i64 to i32 | ||
// CHECK: %[[T8:.*]] = arith.trunci %[[T4]] : i64 to i32 | ||
// CHECK: %[[T9:.*]] = arith.trunci %[[T5]] : i64 to i32 | ||
// CHECK: %[[T10:.*]] = tensor.from_elements %[[T6]], %[[T7]], %[[T8]], %[[T9]] : tensor<4xi32> | ||
// CHECK: %[[T11:.*]] = "chlo.dynamic_reshape"(%[[T0]], %[[T10]]) : (tensor<?x?x?x?x?xf32>, tensor<4xi32>) -> tensor<?x120x4x64xf32> | ||
// CHECK: %[[T12:.*]] = torch_c.from_builtin_tensor %[[T11]] : tensor<?x120x4x64xf32> -> !torch.vtensor<[?,120,4,64],f32> | ||
// CHECK: return %[[T12]] : !torch.vtensor<[?,120,4,64],f32> | ||
func.func @torch.aten.reshape$view_like(%arg0: !torch.vtensor<[?,?,?,?,?],f32>) -> !torch.vtensor<[?,120,4,64],f32> { | ||
%int-1 = torch.constant.int -1 | ||
%int120 = torch.constant.int 120 | ||
%int4 = torch.constant.int 4 | ||
%int64 = torch.constant.int 64 | ||
%0 = torch.prim.ListConstruct %int-1, %int120, %int4, %int64 : (!torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int> | ||
%1 = torch.aten.reshape %arg0, %0 : !torch.vtensor<[?,?,?,?,?],f32>, !torch.list<int> -> !torch.vtensor<[?,120,4,64],f32> | ||
return %1 : !torch.vtensor<[?,120,4,64],f32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @torch.aten.view.minus1$view_like( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[2,3,?,?],f32>) -> !torch.vtensor<[2,3,?],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[2,3,?,?],f32> -> tensor<2x3x?x?xf32> | ||
// CHECK: %[[INT:.*]]-1 = torch.constant.int -1 | ||
// CHECK: %[[INT1:.*]] = torch.constant.int 1 | ||
// CHECK: %[[INT0:.*]] = torch.constant.int 0 | ||
// CHECK: %[[T1:.*]] = torch.aten.size.int %[[ARG0]], %[[INT0]] : !torch.vtensor<[2,3,?,?],f32>, !torch.int -> !torch.int | ||
// CHECK: %[[T2:.*]] = torch.aten.size.int %[[ARG0]], %[[INT1]] : !torch.vtensor<[2,3,?,?],f32>, !torch.int -> !torch.int | ||
// CHECK: %[[T3:.*]] = torch.prim.ListConstruct %[[T1]], %[[T2]], %[[INT]]-1 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int> | ||
// CHECK: %[[T4:.*]] = torch_c.to_i64 %[[T1]] | ||
// CHECK: %[[T5:.*]] = torch_c.to_i64 %[[T2]] | ||
// CHECK: %[[T6:.*]] = torch_c.to_i64 %[[INT]]-1 | ||
// CHECK: %[[T7:.*]] = arith.trunci %[[T4]] : i64 to i32 | ||
// CHECK: %[[T8:.*]] = arith.trunci %[[T5]] : i64 to i32 | ||
// CHECK: %[[T9:.*]] = arith.trunci %[[T6]] : i64 to i32 | ||
// CHECK: %[[T10:.*]] = tensor.from_elements %[[T7]], %[[T8]], %[[T9]] : tensor<3xi32> | ||
// CHECK: %[[T11:.*]] = "chlo.dynamic_reshape"(%[[T0]], %[[T10]]) : (tensor<2x3x?x?xf32>, tensor<3xi32>) -> tensor<2x3x?xf32> | ||
// CHECK: %[[T12:.*]] = torch_c.from_builtin_tensor %[[T11]] : tensor<2x3x?xf32> -> !torch.vtensor<[2,3,?],f32> | ||
// CHECK: return %[[T12]] : !torch.vtensor<[2,3,?],f32> | ||
func.func @torch.aten.view.minus1$view_like(%arg0: !torch.vtensor<[2,3,?,?],f32>) -> !torch.vtensor<[2,3,?],f32> { | ||
%int-1 = torch.constant.int -1 | ||
%int1 = torch.constant.int 1 | ||
%int0 = torch.constant.int 0 | ||
%0 = torch.aten.size.int %arg0, %int0 : !torch.vtensor<[2,3,?,?],f32>, !torch.int -> !torch.int | ||
%1 = torch.aten.size.int %arg0, %int1 : !torch.vtensor<[2,3,?,?],f32>, !torch.int -> !torch.int | ||
%2 = torch.prim.ListConstruct %0, %1, %int-1 : (!torch.int, !torch.int, !torch.int) -> !torch.list<int> | ||
%3 = torch.aten.view %arg0, %2 : !torch.vtensor<[2,3,?,?],f32>, !torch.list<int> -> !torch.vtensor<[2,3,?],f32> | ||
return %3 : !torch.vtensor<[2,3,?],f32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @torch.aten.view.to_rank1$view_like( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[],f32> -> tensor<f32> | ||
// CHECK: %[[INT1:.*]] = torch.constant.int 1 | ||
// CHECK: %[[T1:.*]] = torch.prim.ListConstruct %[[INT1]] : (!torch.int) -> !torch.list<int> | ||
// CHECK: %[[T2:.*]] = "mhlo.reshape"(%[[T0]]) : (tensor<f32>) -> tensor<1xf32> | ||
// CHECK: %[[T3:.*]] = torch_c.from_builtin_tensor %[[T2]] : tensor<1xf32> -> !torch.vtensor<[1],f32> | ||
// CHECK: return %[[T3]] : !torch.vtensor<[1],f32> | ||
func.func @torch.aten.view.to_rank1$view_like(%arg0: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> { | ||
%int1 = torch.constant.int 1 | ||
%0 = torch.prim.ListConstruct %int1 : (!torch.int) -> !torch.list<int> | ||
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[],f32>, !torch.list<int> -> !torch.vtensor<[1],f32> | ||
return %1 : !torch.vtensor<[1],f32> | ||
} | ||
|
||
// ----- | ||
// CHECK-LABEL: func.func @torch.aten.view.to_rank0$view_like( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[1],f32>) -> !torch.vtensor<[],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[1],f32> -> tensor<1xf32> | ||
// CHECK: %[[T1:.*]] = torch.prim.ListConstruct : () -> !torch.list<int> | ||
// CHECK: %[[T2:.*]] = "mhlo.reshape"(%[[T0]]) : (tensor<1xf32>) -> tensor<f32> | ||
// CHECK: %[[T3:.*]] = torch_c.from_builtin_tensor %[[T2]] : tensor<f32> -> !torch.vtensor<[],f32> | ||
// CHECK: return %[[T3]] : !torch.vtensor<[],f32> | ||
func.func @torch.aten.view.to_rank0$view_like(%arg0: !torch.vtensor<[1],f32>) -> !torch.vtensor<[],f32> { | ||
%0 = torch.prim.ListConstruct : () -> !torch.list<int> | ||
%1 = torch.aten.view %arg0, %0 : !torch.vtensor<[1],f32>, !torch.list<int> -> !torch.vtensor<[],f32> | ||
return %1 : !torch.vtensor<[],f32> | ||
} |