Skip to content

Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

License

Notifications You must be signed in to change notification settings

stdlib-js/blas-ext-base-dnanasumors

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dnanasumors

NPM version Build Status Coverage Status

Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

The L1 norm is defined as

$$\|\mathbf{x}\|_1 = \sum_{i=0}^{n-1} \vert x_i \vert$$

Installation

npm install @stdlib/blas-ext-base-dnanasumors

Alternatively,

  • To load the package in a website via a script tag without installation and bundlers, use the ES Module available on the esm branch (see README).
  • If you are using Deno, visit the deno branch (see README for usage intructions).
  • For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umd branch (see README).

The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.

To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.

Usage

var dnanasumors = require( '@stdlib/blas-ext-base-dnanasumors' );

dnanasumors( N, x, strideX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasumors( N, x, 1 );
// returns 5.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: index increment for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of absolute values (L1 norm) for every other element in x,

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );

var v = dnanasumors( 4, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dnanasumors( 4, x1, 2 );
// returns 9.0

dnanasumors.ndarray( N, x, strideX, offsetX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;

var v = dnanasumors.ndarray( N, x, 1, 0 );
// returns 5.0

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values (L1 norm) for every other value in x starting from the second value

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dnanasumors.ndarray( 4, x, 2, 1 );
// returns 9.0

Notes

  • If N <= 0, both functions return 0.0.
  • Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.

Examples

var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var dnanasumors = require( '@stdlib/blas-ext-base-dnanasumors' );

function rand() {
    if ( bernoulli( 0.5 ) < 0.2 ) {
        return NaN;
    }
    return discreteUniform( 0, 100 );
}

var x = filledarrayBy( 10, 'float64', rand );
console.log( x );

var v = dnanasumors( x.length, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/blas/ext/base/dnanasumors.h"

stdlib_strided_dnanasumors( N, *X, strideX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation.

const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnanasumors( 4, x, 1 );
// returns 7.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT index increment for X.
double stdlib_strided_dnanasumors( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

stdlib_strided_dnanasumors_ndarray( N, *X, strideX, offsetX )

Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values and using ordinary recursive summation and alternative indexing semantics.

const double x[] = { 1.0, 2.0, 0.0/0.0, 4.0 };

double v = stdlib_strided_dnanasumors_ndarray( 4, x, 1, 0 );
// returns 7.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT index increment for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dnanasumors_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/blas/ext/base/dnanasumors.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, 2.0, -3.0, -4.0, 5.0, -6.0, -7.0, 8.0, 0.0/0.0, 0.0/0.0 };

    // Specify the number of elements:
    const int N = 5;

    // Specify the stride length:
    const int strideX = 2;

    // Compute the sum:
    double v = stdlib_strided_dnanasumors( N, x, strideX );

    // Print the result:
    printf( "sumabs: %lf\n", v );
}

See Also

  • @stdlib/blas-ext/base/dnanasum: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.