About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring
NaN
values and using ordinary recursive summation.
The L1 norm is defined as
import dnanasumors from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-ext-base-dnanasumors@esm/index.mjs';
Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN
values and using ordinary recursive summation.
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@esm/index.mjs';
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dnanasumors( N, x, 1 );
// returns 5.0
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float64Array
. - strideX: index increment for
x
.
The N
and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of absolute values (L1 norm) for every other element in x
,
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@esm/index.mjs';
var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
var v = dnanasumors( 4, x, 2 );
// returns 5.0
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@esm/index.mjs';
var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = dnanasumors( 4, x1, 2 );
// returns 9.0
Computes the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN
values and using ordinary recursive summation and alternative indexing semantics.
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@esm/index.mjs';
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dnanasumors.ndarray( N, x, 1, 0 );
// returns 5.0
The function has the following additional parameters:
- offsetX: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of absolute values (L1 norm) for every other value in x
starting from the second value
import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@esm/index.mjs';
var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var v = dnanasumors.ndarray( 4, x, 2, 1 );
// returns 9.0
- If
N <= 0
, both functions return0.0
. - Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.
<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">
import discreteUniform from 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-discrete-uniform@esm/index.mjs';
import bernoulli from 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-bernoulli@esm/index.mjs';
import filledarrayBy from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-filled-by@esm/index.mjs';
import dnanasumors from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-ext-base-dnanasumors@esm/index.mjs';
function rand() {
if ( bernoulli( 0.5 ) < 0.2 ) {
return NaN;
}
return discreteUniform( 0, 100 );
}
var x = filledarrayBy( 10, 'float64', rand );
console.log( x );
var v = dnanasumors( x.length, x, 1 );
console.log( v );
</script>
</body>
</html>
@stdlib/blas-ext/base/dnanasum
: calculate the sum of absolute values (L1 norm) of double-precision floating-point strided array elements, ignoring NaN values.
This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.