forked from open-mmlab/mmpose
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support temporal pool in tsm (open-mmlab#40)
- Loading branch information
1 parent
08bb3f8
commit d85364d
Showing
3 changed files
with
182 additions
and
0 deletions.
There are no files selected for viewing
128 changes: 128 additions & 0 deletions
128
configs/recognition/tsm/tsm_temporal_pool_r50_1x1x8_50e_kinetics400_rgb.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# model settings | ||
model = dict( | ||
type='Recognizer2D', | ||
backbone=dict( | ||
type='ResNetTSM', | ||
pretrained='torchvision://resnet50', | ||
depth=50, | ||
norm_eval=False, | ||
temporal_pool=True, | ||
shift_div=8), | ||
cls_head=dict( | ||
type='TSMHead', | ||
num_classes=400, | ||
in_channels=2048, | ||
spatial_type='avg', | ||
consensus=dict(type='AvgConsensus', dim=1), | ||
dropout_ratio=0.5, | ||
init_std=0.001, | ||
temporal_pool=True, | ||
is_shift=True)) | ||
# model training and testing settings | ||
train_cfg = None | ||
test_cfg = dict(average_clips=None) | ||
# dataset settings | ||
dataset_type = 'RawframeDataset' | ||
data_root = 'data/kinetics400/rawframes_train' | ||
data_root_val = 'data/kinetics400/rawframes_val' | ||
ann_file_train = 'data/kinetics400/kinetics400_train_list_rawframes.txt' | ||
ann_file_val = 'data/kinetics400/kinetics400_val_list_rawframes.txt' | ||
ann_file_test = 'data/kinetics400/kinetics400_val_list_rawframes.txt' | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) | ||
train_pipeline = [ | ||
dict(type='SampleFrames', clip_len=1, frame_interval=1, num_clips=8), | ||
dict(type='FrameSelector'), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict( | ||
type='MultiScaleCrop', | ||
input_size=224, | ||
scales=(1, 0.875, 0.75, 0.66), | ||
random_crop=False, | ||
max_wh_scale_gap=1, | ||
num_fixed_crops=13), | ||
dict(type='Resize', scale=(224, 224), keep_ratio=False), | ||
dict(type='Flip', flip_ratio=0.5), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='FormatShape', input_format='NCHW'), | ||
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), | ||
dict(type='ToTensor', keys=['imgs', 'label']) | ||
] | ||
val_pipeline = [ | ||
dict( | ||
type='SampleFrames', | ||
clip_len=1, | ||
frame_interval=1, | ||
num_clips=8, | ||
test_mode=True), | ||
dict(type='FrameSelector'), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='CenterCrop', crop_size=224), | ||
dict(type='Flip', flip_ratio=0), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='FormatShape', input_format='NCHW'), | ||
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), | ||
dict(type='ToTensor', keys=['imgs']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='SampleFrames', | ||
clip_len=1, | ||
frame_interval=1, | ||
num_clips=8, | ||
test_mode=True), | ||
dict(type='FrameSelector'), | ||
dict(type='Resize', scale=(-1, 256)), | ||
dict(type='CenterCrop', crop_size=224), | ||
dict(type='Flip', flip_ratio=0), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='FormatShape', input_format='NCHW'), | ||
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), | ||
dict(type='ToTensor', keys=['imgs']) | ||
] | ||
data = dict( | ||
videos_per_gpu=8, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_train, | ||
data_prefix=data_root, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_val, | ||
data_prefix=data_root_val, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=ann_file_test, | ||
data_prefix=data_root_val, | ||
pipeline=test_pipeline)) | ||
# optimizer | ||
optimizer = dict( | ||
type='SGD', | ||
constructor='TSMOptimizerConstructor', | ||
paramwise_cfg=dict(fc_lr5=True), | ||
lr=0.01, # this lr is used for 8 gpus | ||
momentum=0.9, | ||
weight_decay=0.0001) | ||
optimizer_config = dict(grad_clip=dict(max_norm=20, norm_type=2)) | ||
# learning policy | ||
lr_config = dict(policy='step', step=[20, 40]) | ||
total_epochs = 50 | ||
checkpoint_config = dict(interval=5) | ||
evaluation = dict( | ||
interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5)) | ||
log_config = dict( | ||
interval=20, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook'), | ||
]) | ||
# runtime settings | ||
dist_params = dict(backend='nccl') | ||
log_level = 'INFO' | ||
work_dir = './work_dirs/tsm_temporal_pool_r50_1x1x8_100e_kinetics400_rgb/' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters