Skip to content

Commit

Permalink
Polish docs (open-mmlab#39)
Browse files Browse the repository at this point in the history
  • Loading branch information
dreamerlin authored Jul 20, 2020
1 parent c1e93cb commit 08bb3f8
Show file tree
Hide file tree
Showing 3 changed files with 28 additions and 268 deletions.
269 changes: 6 additions & 263 deletions docs/getting_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,12 +46,12 @@ You can use the following commands to test a dataset.
```shell
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \
[--gpu-collect] [--tmpdir ${TMPDIR}] [--average-clips ${AVG_TYPE}] \
[--gpu-collect] [--tmpdir ${TMPDIR}] [--options ${OPTIONS}] [--average-clips ${AVG_TYPE}] \
[--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}]

# multi-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \
[--gpu-collect] [--tmpdir ${TMPDIR}] [--average-clips ${AVG_TYPE}] \
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] \
[--gpu-collect] [--tmpdir ${TMPDIR}] [--options ${OPTIONS}] [--average-clips ${AVG_TYPE}] \
[--launcher ${JOB_LAUNCHER}] [--local_rank ${LOCAL_RANK}]
```

Expand All @@ -61,6 +61,7 @@ Optional arguments:
- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., `top_k_accuracy`, `mean_class_accuracy` are available for all datasets in recognition, `mean_average_precision` for Multi-Moments in Time, `AR@AN` for ActivityNet, etc.
- `--gpu-collect`: If specified, recognition results will be collected using gpu communication. Otherwise, it will save the results on different gpus to `TMPDIR` and collect them by the rank 0 worker.
- `TMPDIR`: Temporary directory used for collecting results from multiple workers, available when `--gpu-collect` is not specified.
- `OPTIONS`: Custom options used for evaluation. Allowed values depend on the arguments of the `evaluate` function in dataset.
- `AVG_TYPE`: Items to average the test clips. If set to `prob`, it will apply softmax before averaging the clip scores. Otherwise, it will directly average the clip scores.
- `JOB_LAUNCHER`: Items for distributed job initialization launcher. Allowed choices are `none`, `pytorch`, `slurm`, `mpi`. Especially, if set to none, it will test in a non-distributed mode.
- `LOCAL_RANK`: ID for local rank. If not specified, it will be set to 0.
Expand All @@ -80,7 +81,7 @@ Assume that you have already downloaded the checkpoints to the directory `checkp
2. Test TSN on Something-Something V1 with 8 GPUS, and evaluate the top-k accuracy.

```shell
python tools/test.py configs/recognition/tsn/tsn_r50_1x1x8_50e_sthv1_rgb.py \
./tools/dist_test.py configs/recognition/tsn/tsn_r50_1x1x8_50e_sthv1_rgb.py \
checkpoints/SOME_CHECKPOINT.pth \
8 --out results.pkl --eval top_k_accuracy
```
Expand Down Expand Up @@ -423,265 +424,7 @@ E.g.,
python tools/publish_model.py work_dirs/tsn_r50_1x1x3_100e_kinetics400_rgb/latest.pth tsn_r50_1x1x3_100e_kinetics400_rgb.pth
```
The final output filename will be `tsn_r50_1x1x3_100e_kinetics400_rgb-{hash id}.pth`
## How-to
### Use my own datasets
The simplest way is to convert your dataset to existing dataset formats (RawframeDataset or VideoDataset).
Here we show an example of using a custom dataset, assuming it is also in RawframeDataset format.
In `configs/task/method/my_custom_config.py`
```python
...
# dataset settings
dataset_type = 'RawframeDataset'
ann_file_train = 'data/custom/custom_train_list.txt'
ann_file_val = 'data/custom/custom_val_list.txt'
ann_file_test = 'data/custom/custom_val_list.txt'
...
data = dict(
videos_per_gpu=32,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
...),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
...),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
...))
...
```
There are three kinds of annotation files.
- rawframe annotation
The annotation of a rawframe dataset is a text file with multiple lines,
and each line indicates `frame_directory` (relative path) of a video,
`total_frames` of a video and the `label` of a video, which are split with a whitespace.
Here is an example.
```
some/directory-1 163 1
some/directory-2 122 1
some/directory-3 258 2
some/directory-4 234 2
some/directory-5 295 3
some/directory-6 121 3
```
- video annotation
The annotation of a video dataset is a text file with multiple lines,
and each line indicates a sample video with the `filepath` (relative path) and `label`,
which are split with a whitespace.
Here is an example.
```
some/path/000.mp4 1
some/path/001.mp4 1
some/path/002.mp4 2
some/path/003.mp4 2
some/path/004.mp4 3
some/path/005.mp4 3
```
- ActivityNet annotation
The annotation of ActivityNet dataset is a json file. Each key is a video name
and the corresponding value is the meta data and annotation for the video.
Here is an example.
```
{
"video1": {
"duration_second": 211.53,
"duration_frame": 6337,
"annotations": [
{
"segment": [
30.025882995319815,
205.2318595943838
],
"label": "Rock climbing"
}
],
"feature_frame": 6336,
"fps": 30.0,
"rfps": 29.9579255898
},
"video2": {
"duration_second": 26.75,
"duration_frame": 647,
"annotations": [
{
"segment": [
2.578755070202808,
24.914101404056165
],
"label": "Drinking beer"
}
],
"feature_frame": 624,
"fps": 24.0,
"rfps": 24.1869158879
}
}
```
There are two ways to work with custom datasets.
- online conversion
You can write a new Dataset class inherited from [BaseDataset](/mmaction/datasets/base.py), and overwrite two methods
`load_annotations(self)` and `evaluate(self, results, metrics, logger)`,
like [RawframeDataset](/mmaction/datasets/rawframe_dataset.py), [VideoDataset](/mmaction/datasets/video_dataset.py) or [ActivityNetDataset](/mmaction/datasets/activitynet_dataset.py).
- offline conversion
You can convert the annotation format to the expected format above and save it to
a pickle or json file, then you can simply use `RawframeDataset`, `VideoDataset` or `ActivityNetDataset`.
### Customize optimizer
An example of customized optimizer is [CopyOfSGD](/mmaction/core/optimizer/copy_of_sgd.py).
More generally, a customized optimizer could be defined as following.
In `mmaction/core/optimizer/my_optimizer.py`:
```python
from .registry import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
```
In `mmaction/core/optimizer/__init__.py`:
```python
from .my_optimizer import MyOptimizer
```
Then you can use `MyOptimizer` in `optimizer` field of config files.
Especially, If you want to construct a optimizer based on a specified model and param-wise config,
You can write a new optimizer constructor inherit from [DefaultOptimizerConstructor](https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/optimizer/default_constructor.py)
and overwrite the `add_params(self, params, module)` method.
An example of customized optimizer constructor is [TSMOptimizerConstructor](/mmaction/core/optimizer/tsm_optimizer_constructor.py).
More generally, a customized optimizer constructor could be defined as following.
In `mmaction/core/optimizer/my_optimizer_constructor.py`:
```python
from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor
@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor(DefaultOptimizerConstructor):
```
In `mmaction/core/optimizer/__init__.py`:
```python
from .my_optimizer_constructor import MyOptimizerConstructor
```
Then you can use `MyOptimizerConstructor` in `optimizer` field of config files.
### Develop new components
We basically categorize model components into 4 types.
- recognizer: the whole recognizer model pipeline, usually contains a backbone and cls_head.
- backbone: usually an FCN network to extract feature maps, e.g., ResNet, BNInception.
- cls_head: the component for classification task, usually contains an FC layer with some pooling layers.
- localizer: the model for localization task, currently available: BSN, BMN.
Here we show how to develop new components with an example of TSN.
1. Create a new file `mmaction/models/backbones/resnet.py`.
```python
import torch.nn as nn
from ..registry import BACKBONES
@BACKBONES.register_module()
class ResNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
def init_weights(self, pretrained=None):
pass
```
2. Import the module in `mmaction/models/backbones/__init__.py`.
```python
from .resnet import ResNet
```
3. Create a new file `mmaction/models/heads/tsn_head.py`.
You can write a new classification head inherit from [BaseHead](/mmaction/models/heads/base.py),
and overwrite `init_weights(self)` and `forward(self, x)` method.
```python
from ..registry import HEADS
from .base import BaseHead
@HEADS.register_module()
class TSNHead(BaseHead):
def __init__(self, arg1, arg2):
pass
def forward(self, x):
pass
def init_weights(self):
pass
```
4. Import the module in `mmaction/models/heads/__init__.py`
```python
from .tsn_head import TSNHead
```
5. Use it in your config file.
Since TSN is a 2D action recognition model, we set its type `Recognizer2D`.
```python
model = dict(
type='Recognizer2D',
backbone=dict(
type='ResNet',
arg1=xxx,
arg2=xxx),
cls_head=dict(
type='TSNHead',
arg1=xxx,
arg2=xxx))
```
The final output filename will be `tsn_r50_1x1x3_100e_kinetics400_rgb-{hash id}.pth`.
## Tutorials
Expand Down
25 changes: 22 additions & 3 deletions docs/tutorials/new_dataset.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@

### Reorganize datasets to existing format

The simplest way is to convert your dataset to existing dataset formats (RawframeDataset or VideoDataset).

There are three kinds of annotation files.

- rawframe annotation
Expand Down Expand Up @@ -104,9 +106,26 @@ In `configs/task/method/my_custom_config.py`:
dataset_type = 'RawframeDataset'
data_root = 'path/to/your/root'
data_root_val = 'path/to/your/root_val'
ann_file_train = 'path/to/your/ann_train/data'
ann_file_val = 'path/to/your/ann_val/data'
ann_file_test = 'path/to/your/ann_test/data'
ann_file_train = 'data/custom/custom_train_list.txt'
ann_file_val = 'data/custom/custom_val_list.txt'
ann_file_test = 'data/custom/custom_val_list.txt'
...
data = dict(
videos_per_gpu=32,
workers_per_gpu=4,
train=dict(
type=dataset_type,
ann_file=ann_file_train,
...),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
...),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
...))
...
```

We use this way to support Rawframe dataset.
Expand Down
2 changes: 0 additions & 2 deletions tools/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,6 @@ def parse_args():
description='MMAction2 test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--gpus', default=1, type=int, help='GPU number used for testing')
parser.add_argument(
'--out', default=None, help='output result file in pickle format')
parser.add_argument(
Expand Down

0 comments on commit 08bb3f8

Please sign in to comment.