Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Review CPU notebooks and run with Python 3.9 #1950

Merged
merged 11 commits into from
Jul 4, 2023

Conversation

miguelgfierro
Copy link
Collaborator

Description

Related Issues

related to #1947

References

Checklist:

  • I have followed the contribution guidelines and code style for this project.
  • I have added tests covering my contributions.
  • I have updated the documentation accordingly.
  • This PR is being made to staging branch and not to main branch.

@review-notebook-app
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@miguelgfierro
Copy link
Collaborator Author

error appearing in Azureml, but not in local

=================================== FAILURES ===================================
___________________________ test_sar_deep_dive_runs ____________________________

notebooks = ***'als_deep_dive': '/mnt/azureml/cr/j/4e944a170be74c0e9727bb7a9e80efcd/exe/wd/examples/02_model_collaborative_filtering...rk_movielens': '/mnt/azureml/cr/j/4e944a170be74c0e9727bb7a9e80efcd/exe/wd/examples/06_benchmarks/movielens.ipynb', ...***
output_notebook = 'output.ipynb', kernel_name = 'python3'

    @pytest.mark.notebooks
    def test_sar_deep_dive_runs(notebooks, output_notebook, kernel_name):
        notebook_path = notebooks["sar_deep_dive"]
>       pm.execute_notebook(notebook_path, output_notebook, kernel_name=kernel_name)

tests/unit/examples/test_notebooks_python.py:43: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/azureml-envs/azureml_2248098658e75fe22b1e778dcf414d40/lib/python3.9/site-packages/papermill/execute.py:[128](https://github.com/microsoft/recommenders/actions/runs/5388016531/jobs/9780549827#step:3:135): in execute_notebook
    raise_for_execution_errors(nb, output_path)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

nb = ***'cells': [***'id': 'ed4e3ed1', 'cell_type': 'markdown', 'source': '<span style="color:red; font-family:Helvetica Neue, ...end_time': '2023-06-27T09:42:50.951864', 'duration': 12.94534, 'exception': True***, 'nbformat': 4, 'nbformat_minor': 5***
output_path = 'output.ipynb'

    def raise_for_execution_errors(nb, output_path):
        """Assigned parameters into the appropriate place in the input notebook
    
        Parameters
        ----------
        nb : NotebookNode
           Executable notebook object
        output_path : str
           Path to write executed notebook
        """
        error = None
        for index, cell in enumerate(nb.cells):
            if cell.get("outputs") is None:
                continue
    
            for output in cell.outputs:
                if output.output_type == "error":
                    if output.ename == "SystemExit" and (output.evalue == "" or output.evalue == "0"):
                        continue
                    error = PapermillExecutionError(
                        cell_index=index,
                        exec_count=cell.execution_count,
                        source=cell.source,
                        ename=output.ename,
                        evalue=output.evalue,
                        traceback=output.traceback,
                    )
                    break
    
        if error:
            # Write notebook back out with the Error Message at the top of the Notebook, and a link to
            # the relevant cell (by adding a note just before the failure with an HTML anchor)
            error_msg = ERROR_MESSAGE_TEMPLATE % str(error.exec_count)
            error_msg_cell = nbformat.v4.new_markdown_cell(error_msg)
            error_msg_cell.metadata['tags'] = [ERROR_MARKER_TAG]
            error_anchor_cell = nbformat.v4.new_markdown_cell(ERROR_ANCHOR_MSG)
            error_anchor_cell.metadata['tags'] = [ERROR_MARKER_TAG]
    
            # put the anchor before the cell with the error, before all the indices change due to the
            # heading-prepending
            nb.cells.insert(error.cell_index, error_anchor_cell)
            nb.cells.insert(0, error_msg_cell)
    
            write_ipynb(nb, output_path)
>           raise error
E           papermill.exceptions.PapermillExecutionError: 
E           ---------------------------------------------------------------------------
E           Exception encountered at "In [9]":
E           ---------------------------------------------------------------------------
E           ValueError                                Traceback (most recent call last)
E           Cell In[9], line 1
E           ----> 1 top_k = model.recommend_k_items(test, top_k=TOP_K, remove_seen=True)
E           
E           File /mnt/azureml/cr/j/4e944a[170](https://github.com/microsoft/recommenders/actions/runs/5388016531/jobs/9780549827#step:3:177)be74c0e9727bb7a9e80efcd/exe/wd/recommenders/models/sar/sar_singlenode.py:533, in SARSingleNode.recommend_k_items(self, test, top_k, sort_top_k, remove_seen)
E               520 def recommend_k_items(self, test, top_k=10, sort_top_k=True, remove_seen=False):
E               521     """Recommend top K items for all users which are in the test set
E               522 
E               523     Args:
E              (...)
E               530         pandas.DataFrame: top k recommendation items for each user
E               531     """
E           --> 533     test_scores = self.score(test, remove_seen=remove_seen)
E               535     top_items, top_scores = get_top_k_scored_items(
E               536         scores=test_scores, top_k=top_k, sort_top_k=sort_top_k
E               537     )
E               539     df = pd.DataFrame(
E               540         ***
E               541             self.col_user: np.repeat(
E              (...)
E               546         ***
E               547     )
E           
E           File /mnt/azureml/cr/j/4e944a170be74c0e9727bb7a9e80efcd/exe/wd/recommenders/models/sar/sar_singlenode.py:346, in SARSingleNode.score(self, test, remove_seen)
E               344 # calculate raw scores with a matrix multiplication
E               345 logger.info("Calculating recommendation scores")
E           --> 346 test_scores = self.user_affinity[user_ids, :].dot(self.item_similarity)
E               348 # ensure we're working with a dense ndarray
E               349 if isinstance(test_scores, sparse.spmatrix):
E           
E           File /azureml-envs/azureml_[224](https://github.com/microsoft/recommenders/actions/runs/5388016531/jobs/9780549827#step:3:231)8098658e75fe22b1e778dcf414d40/lib/python3.9/site-packages/scipy/sparse/_base.py:411, in _spbase.dot(self, other)
E               409     return self * other
E               410 else:
E           --> 411     return self @ other
E           
E           File /azureml-envs/azureml_2248098658e75fe22b1e778dcf414d40/lib/python3.9/site-packages/scipy/sparse/_base.py:622, in _spbase.__matmul__(self, other)
E               620 def __matmul__(self, other):
E               621     if isscalarlike(other):
E           --> 622         raise ValueError("Scalar operands are not allowed, "
E               623                          "use '*' instead")
E               624     return self._mul_dispatch(other)
E           
E           ValueError: Scalar operands are not allowed, use '*' instead

See run https://github.com/microsoft/recommenders/actions/runs/5388016531/jobs/9780549827

@miguelgfierro
Copy link
Collaborator Author

@anargyri the issue with scipy is fixed, I'm reruning the tests, hopefuly they pass. Please review.

@miguelgfierro
Copy link
Collaborator Author

miguelgfierro commented Jul 4, 2023

One problem we are seeing is that the old version of SAR with python 3.6 gave these results:

      "System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) \n",
      "[GCC 7.3.0]\n",
      "Pandas version: 0.24.2\n"

"MAP:\t\t 0.095544\n",
      "NDCG:\t\t 0.350232\n",
      "Precision@K:\t 0.305726\n",
      "Recall@K:\t 0.164690\n"

while the new version with Python 3.9 gives these results:

System version: 3.9.16 (main, May 15 2023, 23:46:34) 
[GCC 11.2.0]
Pandas version: 1.5.3
NumPy version: 1.24.4
Scipy version: 1.10.1

      "MAP:\t\t 0.113796\n",
      "NDCG:\t\t 0.384809\n",
      "Precision@K:\t 0.331707\n",
      "Recall@K:\t 0.182571\n"

with Python 3.8:

System version: 3.8.13 (default, Mar 28 2022, 11:38:47) 
[GCC 7.5.0]
Pandas version: 1.4.2
NumPy version: 1.21.6
SciPy version: 1.8.0

MAP:		 0.113796
NDCG:		 0.384809
Precision@K:	 0.331707
Recall@K:	 0.182571

with Python 3.7:

System version: 3.7.16 (default, Jan 17 2023, 22:20:44) 
[GCC 11.2.0]
Pandas version: 1.3.5
NumPy version: 1.21.6
SciPy version: 1.7.3

Top K:		 10
MAP:		 0.113796
NDCG:		 0.384809
Precision@K:	 0.331707
Recall@K:	 0.182571

with Python 3.6:

System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) 
[GCC 7.3.0]
Pandas version: 1.1.5
NumPy version: 1.19.5
SciPy version: 1.5.4

MAP:		 0.113796
NDCG:		 0.384809
Precision@K:	 0.331707
Recall@K:	 0.182571

with Python 3.6 and Pandas<1:

System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) 
[GCC 7.3.0]
Pandas version: 0.24.2
NumPy version: 1.19.5
SciPy version: 1.5.4


Model:
Top K:		 10
MAP:		 0.113796
NDCG:		 0.384809
Precision@K:	 0.331707
Recall@K:	 0.182571

Comment on lines +492 to +495
"MAP:\t\t 0.113796\n",
"NDCG:\t\t 0.384809\n",
"Precision@K:\t 0.331707\n",
"Recall@K:\t 0.182571\n"
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@anargyri I run the notebook with python 3.6-3.9 and I always got the same results. So I believe that the numbers are correct.

An hypothesis of what could have happened is that we haven't updated this notebook since before 2020 https://github.com/microsoft/recommenders/commits/main/examples/02_model_collaborative_filtering/sar_deep_dive.ipynb and in the mean time, there was been some changes, like the TOP_K issue Chuyang found 68b60c0. That could explain the different numbers. Another option is the splitter, again, since it's been a while that we haven't touched the notebook, we might have not detected them.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I think you are right. Some time in the past there was a change but the notebook outputs were not checked in properly. Btw I think we do not ensure against something like this in the unit tests, do we? I.e. we just do a test that this notebook executes without error but we don't test that the results don't change significantly (I remember that this can be a source of many failing tests, but maybe we should revisit?)

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here the discrepancy is around 20% which should raise a flag imo. I mean, the error tolerance can be high enough, but at least there should be some error checking, whereas now there is none.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You are right, we are not checking this particular notebook with the metrics, we are only making sure it runs in the unit tests.

I have added an issue: #1955

@miguelgfierro miguelgfierro merged commit af53046 into staging Jul 4, 2023
@miguelgfierro miguelgfierro deleted the miguel/review_notebooks branch July 4, 2023 14:31
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants