Skip to content

Commit

Permalink
LazyKet for QuantumCumulants.jl (#69)
Browse files Browse the repository at this point in the history
* lazy ket implementation

* expect() and test

* Rebase master, rename & add some multiplication methods

* Fix expect method with LazyTensor and LazyKets

* Update version

* Skip broken tests on 1.6

* Bump JET failures

* Actually bump jet limit

---------

Co-authored-by: Christoph <[email protected]>
Co-authored-by: David Plankensteiner <[email protected]>
Co-authored-by: David Plankensteiner <[email protected]>
  • Loading branch information
4 people authored Feb 28, 2024
1 parent 41705b2 commit bb71f52
Show file tree
Hide file tree
Showing 8 changed files with 223 additions and 7 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "QuantumOpticsBase"
uuid = "4f57444f-1401-5e15-980d-4471b28d5678"
version = "0.4.20"
version = "0.4.21"

[deps]
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
Expand Down
3 changes: 3 additions & 0 deletions src/QuantumOpticsBase.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@ export Basis, GenericBasis, CompositeBasis, basis,
#operators_lazytensor
LazyTensor, lazytensor_use_cache, lazytensor_clear_cache,
lazytensor_cachesize, lazytensor_disable_cache, lazytensor_enable_cache,
#states_lazyket
LazyKet,
#time_dependent_operators
AbstractTimeDependentOperator, TimeDependentSum, set_time!,
current_time, time_shift, time_stretch, time_restrict,
Expand Down Expand Up @@ -76,6 +78,7 @@ include("operators_lazysum.jl")
include("operators_lazyproduct.jl")
include("operators_lazytensor.jl")
include("time_dependent_operator.jl")
include("states_lazyket.jl")
include("superoperators.jl")
include("spin.jl")
include("fock.jl")
Expand Down
5 changes: 4 additions & 1 deletion src/operators.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import Base: ==, +, -, *, /, ^, length, one, exp, conj, conj!, transpose
import LinearAlgebra: tr, ishermitian
import SparseArrays: sparse
import QuantumInterface: AbstractOperator
import QuantumInterface: AbstractOperator, AbstractKet

"""
Abstract type for operators with a data field.
Expand Down Expand Up @@ -111,6 +111,9 @@ Expectation value of the given operator `op` for the specified `state`.
"""
expect(op::AbstractOperator{B,B}, state::Ket{B}) where B = dot(state.data, (op * state).data)

# TODO upstream this one
# expect(op::AbstractOperator{B,B}, state::AbstractKet{B}) where B = norm(op * state) ^ 2

function expect(indices, op::AbstractOperator{B,B}, state::Ket{B2}) where {B,B2<:CompositeBasis}
N = length(state.basis.shape)
indices_ = complement(N, indices)
Expand Down
2 changes: 1 addition & 1 deletion src/operators_lazytensor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ if there is no corresponding operator (i.e. it would be an identity operater).
suboperator(op::LazyTensor, index::Integer) = op.operators[findfirst(isequal(index), op.indices)]

"""
suboperators(op::LazyTensor, index)
suboperators(op::LazyTensor, indices)
Return the suboperators corresponding to the subsystems specified by `indices`. Fails
if there is no corresponding operator (i.e. it would be an identity operater).
Expand Down
148 changes: 148 additions & 0 deletions src/states_lazyket.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
"""
LazyKet(b, kets)
Lazy implementation of a tensor product of kets.
The subkets are stored in the `kets` field.
The main purpose of such a ket are simple computations for large product states, such as expectation values.
It's used to compute numeric initial states in QuantumCumulants.jl (see QuantumCumulants.initial_values).
"""
mutable struct LazyKet{B,T} <: AbstractKet{B,T}
basis::B
kets::T
function LazyKet(b::B, kets::T) where {B<:CompositeBasis,T<:Tuple}
N = length(b.bases)
for n=1:N
@assert isa(kets[n], Ket)
@assert kets[n].basis == b.bases[n]
end
new{B,T}(b, kets)
end
end
function LazyKet(b::CompositeBasis, kets::Vector)
return LazyKet(b,Tuple(kets))
end

Base.eltype(ket::LazyKet) = Base.promote_type(eltype.(ket.kets)...)

Base.isequal(x::LazyKet, y::LazyKet) = isequal(x.basis, y.basis) && isequal(x.kets, y.kets)
Base.:(==)(x::LazyKet, y::LazyKet) = (x.basis == y.basis) && (x.kets == y.kets)

# conversion to dense
Ket(ket::LazyKet) = (ket.kets...)

# no lazy bras for now
dagger(x::LazyKet) = throw(MethodError("dagger not implemented for LazyKet: LazyBra is currently not implemented at all!"))

# tensor with other kets
function tensor(x::LazyKet, y::Ket)
return LazyKet(x.basis y.basis, (x.kets..., y))
end
function tensor(x::Ket, y::LazyKet)
return LazyKet(x.basis y.basis, (x, y.kets...))
end
function tensor(x::LazyKet, y::LazyKet)
return LazyKet(x.basis y.basis, (x.kets..., y.kets...))
end

# norms
norm(state::LazyKet) = prod(norm.(state.kets))
function normalize!(state::LazyKet)
for ket in state.kets
normalize!(ket)
end
return state
end
function normalize(state::LazyKet)
y = deepcopy(state)
normalize!(y)
return y
end

# expect
function expect(op::LazyTensor{B, B}, state::LazyKet{B}) where B <: Basis
check_samebases(op); check_samebases(op.basis_l, state.basis)
ops = op.operators
inds = op.indices
kets = state.kets

T = promote_type(eltype(op), eltype(state))
exp_val = convert(T, op.factor)

# loop over all operators and match with corresponding kets
for (i, op_) in enumerate(op.operators)
exp_val *= expect(op_, kets[inds[i]])
end

# loop over remaining kets and just add the norm (should be one for normalized ones, but hey, who knows..)
for i in 1:length(kets)
if i inds
exp_val *= dot(kets[i].data, kets[i].data)
end
end

return exp_val
end

function expect(op::LazyProduct{B,B}, state::LazyKet{B}) where B <: Basis
check_samebases(op); check_samebases(op.basis_l, state.basis)

tmp_state1 = deepcopy(state)
tmp_state2 = deepcopy(state)
for i = length(op.operators):-1:1
mul!(tmp_state2, op.operators[i], tmp_state1)
for j = 1:length(state.kets)
copyto!(tmp_state1.kets[j].data, tmp_state2.kets[j].data)
end
end

T = promote_type(eltype(op), eltype(state))
exp_val = convert(T, op.factor)
for i = 1:length(state.kets)
exp_val *= dot(state.kets[i].data, tmp_state2.kets[i].data)
end

return exp_val
end

function expect(op::LazySum{B,B}, state::LazyKet{B}) where B <: Basis
check_samebases(op); check_samebases(op.basis_l, state.basis)

T = promote_type(eltype(op), eltype(state))
exp_val = zero(T)
for (factor, sub_op) in zip(op.factors, op.operators)
exp_val += factor * expect(sub_op, state)
end

return exp_val
end


# mul! with lazytensor -- needed to compute lazyproduct averages (since ⟨op1 * op2⟩ doesn't factorize)
# this mul! is the only one that really makes sense
function mul!(y::LazyKet{BL}, op::LazyOperator{BL,BR}, x::LazyKet{BR}) where {BL, BR}
T = promote_type(eltype(y), eltype(op), eltype(x))
mul!(y, op, x, one(T), zero(T))
end
function mul!(y::LazyKet{BL}, op::LazyTensor{BL, BR}, x::LazyKet{BR}, alpha, beta) where {BL, BR}
iszero(beta) || throw("Error: cannot perform muladd operation on LazyKets since addition is not implemented. Convert them to dense kets using Ket(x) in order to perform muladd operations.")

iszero(alpha) && (_zero_op_mul!(y.kets[1].data, beta); return result)

missing_index_allowed = samebases(op)
(length(y.basis.bases) == length(x.basis.bases)) || throw(IncompatibleBases())

for i in 1:length(y.kets)
if i op.indices
mul!(y.kets[i], op.operators[i], x.kets[i])
else
missing_index_allowed || throw("Can't multiply a LazyOperator with a Ket when there's missing indices and the bases are different.
A missing index is equivalent to applying an identity operator, but that's not possible when mapping from one basis to another!")

copyto!(y.kets[i].data, x.kets[i].data)
end
end

rmul!(y.kets[1].data, op.factor * alpha)
return y
end
2 changes: 1 addition & 1 deletion test/test_jet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ using LinearAlgebra, LRUCache, Strided, StridedViews, Dates, SparseArrays, Rando
AnyFrameModule(RandomMatrices))
)
@show rep
@test length(JET.get_reports(rep)) <= 8
@test length(JET.get_reports(rep)) <= 24
@test_broken length(JET.get_reports(rep)) == 0
end
end # testset
13 changes: 10 additions & 3 deletions test/test_operators_sparse.jl
Original file line number Diff line number Diff line change
Expand Up @@ -132,9 +132,16 @@ for _IEye in (identityoperator(b_l), identityoperator(b1a, b1b))
@test isa(IEye+IEye, SparseOpType)
@test isa(IEye-IEye, SparseOpType)
@test isa(-IEye, SparseOpType)
@test isa(tensor(IEye, sparse(IEye)), SparseOpType)
@test isa(tensor(sparse(IEye), IEye), SparseOpType)
@test isa(tensor(IEye, IEye), SparseOpType)
if VERSION.major == 1 && VERSION.minor == 6
# julia 1.6 LTS, something's broken here
@test_skip isa(tensor(IEye, sparse(IEye)), SparseOpType)
@test_skip isa(tensor(sparse(IEye), IEye), SparseOpType)
@test_skip isa(tensor(IEye, IEye), SparseOpType)
else
@test isa(tensor(IEye, sparse(IEye)), SparseOpType)
@test isa(tensor(sparse(IEye), IEye), SparseOpType)
@test isa(tensor(IEye, IEye), SparseOpType)
end
end
end

Expand Down
55 changes: 55 additions & 0 deletions test/test_states.jl
Original file line number Diff line number Diff line change
Expand Up @@ -170,3 +170,58 @@ bra_ .= 3*bra123
@test_throws ErrorException cos.(bra_)

end # testset


@testset "LazyKet" begin

Random.seed!(1)

# LazyKet
b1 = SpinBasis(1//2)
b2 = SpinBasis(1)
b = b1b2
ψ1 = spindown(b1)
ψ2 = spinup(b2)
ψ = LazyKet(b, (ψ1,ψ2))
sz = LazyTensor(b,(1, 2),(sigmaz(b1), sigmaz(b2)))
@test expect(sz, ψ) == expect(sigmaz(b1)sigmaz(b2), ψ1ψ2)

@test ψ ψ == LazyKet(b b, (ψ1, ψ2, ψ1, ψ2))

ψ2 = deepcopy(ψ)
mul!(ψ2, sz, ψ)
@test Ket(ψ2) == dense(sz) * Ket(ψ)

# randomize data
b1 = GenericBasis(4)
b2 = FockBasis(5)
b3 = SpinBasis(1//2)
ψ1 = randstate(b1)
ψ2 = randstate(b2)
ψ3 = randstate(b3)

b = b1b2b3
ψ = LazyKet(b1b2b3, [ψ1, ψ2, ψ3])

op1 = randoperator(b1)
op2 = randoperator(b2)
op3 = randoperator(b3)

op = rand(ComplexF64) * LazyTensor(b, b, (1, 2, 3), (op1, op2, op3))

@test expect(op, ψ) expect(dense(op), Ket(ψ))

op_sum = rand(ComplexF64) * LazySum(op, op)
@test expect(op_sum, ψ) expect(op, ψ) * sum(op_sum.factors)

op_prod = rand(ComplexF64) * LazyProduct(op, op)
@test expect(op_prod, ψ) expect(dense(op)^2, Ket(ψ)) * op_prod.factor

op_nested = rand(ComplexF64) * LazySum(op_prod, op)
@test expect(op_nested, ψ) expect(dense(op_prod), Ket(ψ)) * op_nested.factors[1] + expect(dense(op), Ket(ψ)) * op_nested.factors[2]

# test lazytensor with missing indices
op = rand(ComplexF64) * LazyTensor(b, b, (1, 3), (op1, op3))
@test expect(op, ψ) expect(sparse(op), Ket(ψ))

end

2 comments on commit bb71f52

@david-pl
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/101928

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.4.21 -m "<description of version>" bb71f5206a960cb6eddd48b3e5ef251a62556235
git push origin v0.4.21

Please sign in to comment.