Skip to content

qiancao/Uncertainty-Quantification-and-Deep-Ensemble

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Uncertainty Quantification and Deep Ensemble

Experiments from our work Uncertainty Quantification and Deep Ensemble https://arxiv.org/abs/2007.08792

For the visualization of the under-confidence of ensembles and how pool-then-calibrate helps regain calibration please look into the notebook evaluate_uq.ipynb

In order to train a Deep Ensemble, use the python file train_ensemble.py. To get details of the command line arguments use the command python train_ensemble.py --h. This will give the detailed usage of the arguments

Train multiple models sequentially

optional arguments:
  -h, --help            show this help message and exit
  --dataset {CIFAR10,CIFAR100,DIABETIC_RETINOPATHY,IMAGEWOOF,IMAGENETTE}
                        Name of the dataset
  --datadir DATADIR     Path to dataset
  --nmodel NMODEL       How many models to train (Deep Ensemble)
  --mixup MIXUP         Alpha for mixup, omit to train without mixup
  --ntrain NTRAIN       How many training example to include, -1 for full
                        dataset
  --nval NVAL           How many validation example to include
  --epoch EPOCH         Number of epochs to train
  --max_lr MAX_LR       Maximum learning rate during LR scheduling
                        (OneCycleLR)
  --bsize BSIZE         Batch size
  --wd WD               Weight decay

For example, if you need to train a Deep Ensemble on CIFAR10 dataset with 1000 training samples and mixup with alpha 0.5, use the command

python train_ensemble.py --dataset CIFAR10 --nmodel 5 --mixup 0.5 --ntrain 1000 --epoch 300 --max_lr 0.05 --bsize 500 --wd 7e-4 --datadir /home/data/

About

Experiments from our work Uncertainty Quantification and Deep Ensemble

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 75.2%
  • Python 24.8%