Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Run black on distributions/ and */__init__.py #4139

Merged
merged 7 commits into from
Sep 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 76 additions & 75 deletions pymc3/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,78 +100,79 @@

from .bound import Bound

__all__ = ['Uniform',
'Flat',
'HalfFlat',
'TruncatedNormal',
'Normal',
'Beta',
'Kumaraswamy',
'Exponential',
'Laplace',
'StudentT',
'Cauchy',
'HalfCauchy',
'Gamma',
'Weibull',
'Bound',
'Lognormal',
'HalfStudentT',
'ChiSquared',
'HalfNormal',
'Wald',
'Pareto',
'InverseGamma',
'ExGaussian',
'VonMises',
'Binomial',
'BetaBinomial',
'Bernoulli',
'Poisson',
'NegativeBinomial',
'ConstantDist',
'Constant',
'ZeroInflatedPoisson',
'ZeroInflatedNegativeBinomial',
'ZeroInflatedBinomial',
'DiscreteUniform',
'Geometric',
'Categorical',
'OrderedLogistic',
'DensityDist',
'Distribution',
'Continuous',
'Discrete',
'NoDistribution',
'TensorType',
'MvNormal',
'MatrixNormal',
'KroneckerNormal',
'MvStudentT',
'Dirichlet',
'Multinomial',
'Wishart',
'WishartBartlett',
'LKJCholeskyCov',
'LKJCorr',
'AR1',
'AR',
'GaussianRandomWalk',
'MvGaussianRandomWalk',
'MvStudentTRandomWalk',
'GARCH11',
'SkewNormal',
'Mixture',
'NormalMixture',
'Triangular',
'DiscreteWeibull',
'Gumbel',
'Logistic',
'LogitNormal',
'Interpolated',
'Bound',
'Rice',
'Moyal',
'Simulator',
'fast_sample_posterior_predictive'
]
__all__ = [
"Uniform",
"Flat",
"HalfFlat",
"TruncatedNormal",
"Normal",
"Beta",
"Kumaraswamy",
"Exponential",
"Laplace",
"StudentT",
"Cauchy",
"HalfCauchy",
"Gamma",
"Weibull",
"Bound",
"Lognormal",
"HalfStudentT",
"ChiSquared",
"HalfNormal",
"Wald",
"Pareto",
"InverseGamma",
"ExGaussian",
"VonMises",
"Binomial",
"BetaBinomial",
"Bernoulli",
"Poisson",
"NegativeBinomial",
"ConstantDist",
"Constant",
"ZeroInflatedPoisson",
"ZeroInflatedNegativeBinomial",
"ZeroInflatedBinomial",
"DiscreteUniform",
"Geometric",
"Categorical",
"OrderedLogistic",
"DensityDist",
"Distribution",
"Continuous",
"Discrete",
"NoDistribution",
"TensorType",
"MvNormal",
"MatrixNormal",
"KroneckerNormal",
"MvStudentT",
"Dirichlet",
"Multinomial",
"Wishart",
"WishartBartlett",
"LKJCholeskyCov",
"LKJCorr",
"AR1",
"AR",
"GaussianRandomWalk",
"MvGaussianRandomWalk",
"MvStudentTRandomWalk",
"GARCH11",
"SkewNormal",
"Mixture",
"NormalMixture",
"Triangular",
"DiscreteWeibull",
"Gumbel",
"Logistic",
"LogitNormal",
"Interpolated",
"Bound",
"Rice",
"Moyal",
"Simulator",
"fast_sample_posterior_predictive",
]
41 changes: 10 additions & 31 deletions pymc3/distributions/bound.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,16 +82,13 @@ def _random(self, lower, upper, point=None, size=None):
upper = np.asarray(upper)
if lower.size > 1 or upper.size > 1:
raise ValueError(
"Drawing samples from distributions with "
"array-valued bounds is not supported."
"Drawing samples from distributions with array-valued bounds is not supported."
)
total_size = np.prod(size).astype(np.int)
samples = []
s = 0
while s < total_size:
sample = np.atleast_1d(
self._wrapped.random(point=point, size=total_size)
).flatten()
sample = np.atleast_1d(self._wrapped.random(point=point, size=total_size)).flatten()

select = sample[np.logical_and(sample >= lower, sample <= upper)]
samples.append(select)
Expand Down Expand Up @@ -128,7 +125,7 @@ def random(self, point=None, size=None):
upper,
dist_shape=self.shape,
size=size,
not_broadcast_kwargs={'point': point},
not_broadcast_kwargs={"point": point},
)
elif self.lower is not None:
lower = draw_values([self.lower], point=point, size=size)
Expand All @@ -138,7 +135,7 @@ def random(self, point=None, size=None):
np.inf,
dist_shape=self.shape,
size=size,
not_broadcast_kwargs={'point': point},
not_broadcast_kwargs={"point": point},
)
else:
upper = draw_values([self.upper], point=point, size=size)
Expand All @@ -148,7 +145,7 @@ def random(self, point=None, size=None):
upper,
dist_shape=self.shape,
size=size,
not_broadcast_kwargs={'point': point},
not_broadcast_kwargs={"point": point},
)


Expand All @@ -168,9 +165,7 @@ def __init__(self, distribution, lower, upper, transform="infer", *args, **kwarg
if lower is not None:
default = lower + 1

super().__init__(
distribution, lower, upper, default, *args, transform=transform, **kwargs
)
super().__init__(distribution, lower, upper, default, *args, transform=transform, **kwargs)


class _ContinuousBounded(_Bounded, Continuous):
Expand Down Expand Up @@ -215,9 +210,7 @@ def __init__(self, distribution, lower, upper, transform="infer", *args, **kwarg
else:
default = None

super().__init__(
distribution, lower, upper, default, *args, transform=transform, **kwargs
)
super().__init__(distribution, lower, upper, default, *args, transform=transform, **kwargs)


class Bound:
Expand Down Expand Up @@ -283,23 +276,11 @@ def __call__(self, name, *args, **kwargs):
transform = kwargs.pop("transform", "infer")
if issubclass(self.distribution, Continuous):
return _ContinuousBounded(
name,
self.distribution,
self.lower,
self.upper,
transform,
*args,
**kwargs
name, self.distribution, self.lower, self.upper, transform, *args, **kwargs
)
elif issubclass(self.distribution, Discrete):
return _DiscreteBounded(
name,
self.distribution,
self.lower,
self.upper,
transform,
*args,
**kwargs
name, self.distribution, self.lower, self.upper, transform, *args, **kwargs
)
else:
raise ValueError("Distribution is neither continuous nor discrete.")
Expand All @@ -311,8 +292,6 @@ def dist(self, *args, **kwargs):
)

elif issubclass(self.distribution, Discrete):
return _DiscreteBounded.dist(
self.distribution, self.lower, self.upper, *args, **kwargs
)
return _DiscreteBounded.dist(self.distribution, self.lower, self.upper, *args, **kwargs)
else:
raise ValueError("Distribution is neither continuous nor discrete.")
12 changes: 3 additions & 9 deletions pymc3/distributions/shape_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,7 @@ def _check_shape_type(shape):
raise TypeError(f"Value {s} is not a valid integer")
out.append(o)
except Exception:
raise TypeError(
f"Supplied value {shape} does not represent a valid shape"
)
raise TypeError(f"Supplied value {shape} does not represent a valid shape")
return tuple(out)


Expand Down Expand Up @@ -172,10 +170,7 @@ def broadcast_dist_samples_shape(shapes, size=None):
shapes = [_check_shape_type(s) for s in shapes]
_size = to_tuple(size)
# samples shapes without the size prepend
sp_shapes = [
s[len(_size) :] if _size == s[: min([len(_size), len(s)])] else s
for s in shapes
]
sp_shapes = [s[len(_size) :] if _size == s[: min([len(_size), len(s)])] else s for s in shapes]
try:
broadcast_shape = shapes_broadcasting(*sp_shapes, raise_exception=True)
except ValueError:
Expand Down Expand Up @@ -277,8 +272,7 @@ def get_broadcastable_dist_samples(
out_shape = broadcast_dist_samples_shape(p_shapes, size=size)
# samples shapes without the size prepend
sp_shapes = [
s[len(_size) :] if _size == s[: min([len(_size), len(s)])] else s
for s in p_shapes
s[len(_size) :] if _size == s[: min([len(_size), len(s)])] else s for s in p_shapes
]
broadcast_shape = shapes_broadcasting(*sp_shapes, raise_exception=True)
broadcastable_samples = []
Expand Down
1 change: 0 additions & 1 deletion pymc3/distributions/simulator.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,6 @@ def _str_repr(self, name=None, dist=None, formatting="plain"):
return f"{name} ~ Simulator({function}({params}), {distance}, {sum_stat})"



def identity(x):
"""Identity function, used as a summary statistics."""
return x
Expand Down
38 changes: 25 additions & 13 deletions pymc3/distributions/special.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@
from theano.scalar.basic_scipy import GammaLn, Psi
from theano import scalar

__all__ = ['gammaln', 'multigammaln', 'psi', 'log_i0']
__all__ = ["gammaln", "multigammaln", "psi", "log_i0"]

scalar_gammaln = GammaLn(scalar.upgrade_to_float, name='scalar_gammaln')
gammaln = tt.Elemwise(scalar_gammaln, name='gammaln')
scalar_gammaln = GammaLn(scalar.upgrade_to_float, name="scalar_gammaln")
gammaln = tt.Elemwise(scalar_gammaln, name="gammaln")


def multigammaln(a, p):
Expand All @@ -33,21 +33,33 @@ def multigammaln(a, p):
degrees of freedom. p > 0
"""
i = tt.arange(1, p + 1)
return (p * (p - 1) * tt.log(np.pi) / 4.
+ tt.sum(gammaln(a + (1. - i) / 2.), axis=0))
return p * (p - 1) * tt.log(np.pi) / 4.0 + tt.sum(gammaln(a + (1.0 - i) / 2.0), axis=0)


def log_i0(x):
"""
Calculates the logarithm of the 0 order modified Bessel function of the first kind""
"""
return tt.switch(tt.lt(x, 5), tt.log1p(x**2. / 4. + x**4. / 64. + x**6. / 2304.
+ x**8. / 147456. + x**10. / 14745600.
+ x**12. / 2123366400.),
x - 0.5 * tt.log(2. * np.pi * x) + tt.log1p(1. / (8. * x)
+ 9. / (128. * x**2.) + 225. / (3072. * x**3.)
+ 11025. / (98304. * x**4.)))
return tt.switch(
tt.lt(x, 5),
tt.log1p(
x ** 2.0 / 4.0
+ x ** 4.0 / 64.0
+ x ** 6.0 / 2304.0
+ x ** 8.0 / 147456.0
+ x ** 10.0 / 14745600.0
+ x ** 12.0 / 2123366400.0
),
x
- 0.5 * tt.log(2.0 * np.pi * x)
+ tt.log1p(
1.0 / (8.0 * x)
+ 9.0 / (128.0 * x ** 2.0)
+ 225.0 / (3072.0 * x ** 3.0)
+ 11025.0 / (98304.0 * x ** 4.0)
),
)


scalar_psi = Psi(scalar.upgrade_to_float, name='scalar_psi')
psi = tt.Elemwise(scalar_psi, name='psi')
scalar_psi = Psi(scalar.upgrade_to_float, name="scalar_psi")
psi = tt.Elemwise(scalar_psi, name="psi")
Loading