Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update Proposal Op #154

Merged
merged 2 commits into from
May 25, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 12 additions & 7 deletions docs/ops/detection/Proposal_1.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

**Detailed description**

*Proposal* has three inputs: a tensor with probabilities whether particular bounding box corresponds to background and foreground, a tensor with bbox_deltas for each of the bounding boxes, a tensor with input image size in the [`image_height`, `image_width`, `scale_height_and_width`] or [`image_height`, `image_width`, `scale_height`, `scale_width`] format. The produced tensor has two dimensions `[batch_size * post_nms_topn, 5]`.
*Proposal* has three inputs: a tensor with probabilities whether particular bounding box corresponds to background and foreground, a tensor with bbox_deltas for each of the bounding boxes, a tensor with input image size in the [`image_height`, `image_width`, `scale_height_and_width`] or [`image_height`, `image_width`, `scale_height`, `scale_width`] format. The produced tensor has two dimensions `[batch_size * post_nms_topn, 5]`, and for each output box contains batch index and box coordinates.
*Proposal* layer does the following with the input tensor:
1. Generates initial anchor boxes. Left top corner of all boxes is at (0, 0). Width and height of boxes are calculated from *base_size* with *scale* and *ratio* attributes.
2. For each point in the first input tensor:
Expand All @@ -19,8 +19,9 @@
5. Takes top *pre_nms_topn* proposals
6. Calculates intersections for boxes and filter out all boxes with \f$intersection/union > nms\_thresh\f$
7. Takes top *post_nms_topn* proposals
8. Returns top proposals
8. Returns top proposals, if there is not enough proposals to fill the whole output tensor, the valid proposals will be terminated with a single -1.

**Attributes**:

* *base_size*

Expand Down Expand Up @@ -136,15 +137,19 @@

**Inputs**:

* **1**: 4D input floating point tensor with class prediction scores. Required.
* **1**: 4D tensor of type *T* and shape `[batch_size, 2*K, H, W]` with class prediction scores. Required.

* **2**: 4D input floating point tensor with box bbox_deltas. Required.
* **2**: 4D tensor of type *T* and shape `[batch_size, 4*K, H, W]` with deltas for each bounding box. Required.

* **3**: 1D input floating tensor 3 or 4 elements: [`image_height`, `image_width`, `scale_height_and_width`] or [`image_height`, `image_width`, `scale_height`, `scale_width`]. Required.
* **3**: 1D tensor of type *T* with 3 or 4 elements: `[image_height, image_width, scale_height_and_width]` or `[image_height, image_width, scale_height, scale_width]`. Required.

**Outputs**:

* **1**: Floating point tensor of shape `[batch_size * post_nms_topn, 5]`.
* **1**: Tensor of type *T* and shape `[batch_size * post_nms_topn, 5]`.

**Types**

* *T*: floating point type.

**Example**

Expand All @@ -155,4 +160,4 @@
<input> ... </input>
<output> ... </output>
</layer>
```
```
5 changes: 4 additions & 1 deletion docs/ops/detection/Proposal_4.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,11 @@ the second optional tensor of shape `[batch_size * post_nms_topn]` with probabil
5. Takes top *pre_nms_topn* proposals
6. Calculates intersections for boxes and filter out all boxes with \f$intersection/union > nms\_thresh\f$
7. Takes top *post_nms_topn* proposals
8. Returns top proposals and optionally their probabilities
8. Returns the results:
* Top proposals, if there is not enough proposals to fill the whole output tensor, the valid proposals will be terminated with a single -1.
* Optionally returns probabilities for each proposal, which are not terminated by any special value.

**Attributes**:

* *base_size*

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,9 @@ TEST_F(NGraphReaderTests, ReadProposalNetwork) {
</output>
</layer>
<layer id="2" name="in3" type="Const" version="opset1">
<data element_type="i64" offset="0" shape="3" size="24"/>
<data element_type="f32" offset="0" shape="3" size="24"/>
<output>
<port id="0" precision="I64">
<port id="0" precision="FP32">
<dim>3</dim>
</port>
</output>
Expand Down Expand Up @@ -85,7 +85,7 @@ TEST_F(NGraphReaderTests, ReadProposalNetwork) {
std::string model_v6 = R"V0G0N(
<net name="Network" version="6" batch="1">
<layers>
<layer name="in3" type="Const" precision="I64" id="4">
<layer name="in3" type="Const" precision="FP32" id="4">
<output>
<port id="2">
<dim>1</dim>
Expand Down Expand Up @@ -183,9 +183,9 @@ TEST_F(NGraphReaderTests, ReadProposalNetwork_2) {
</output>
</layer>
<layer id="2" name="in3" type="Const" version="opset1">
<data element_type="i64" offset="0" shape="4" size="32"/>
<data element_type="f32" offset="0" shape="4" size="32"/>
<output>
<port id="0" precision="I64">
<port id="0" precision="FP32">
<dim>4</dim>
</port>
</output>
Expand Down Expand Up @@ -236,7 +236,7 @@ TEST_F(NGraphReaderTests, ReadProposalNetwork_2) {
std::string model_v6 = R"V0G0N(
<net name="Network" version="6" batch="1">
<layers>
<layer name="in3" type="Const" precision="I64" id="4">
<layer name="in3" type="Const" precision="FP32" id="4">
<output>
<port id="2">
<dim>1</dim>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -45,5 +45,4 @@ INSTANTIATE_TEST_CASE_P(smoke_Proposal_tests, ProposalLayerTest,
::testing::Values(CommonTestUtils::DEVICE_CPU)),
ProposalLayerTest::getTestCaseName
);

} // namespace
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,11 @@ std::vector<std::string> disabledTestPatterns() {
R"(.*EltwiseLayerTest.*eltwiseOpType=Pow.*netPRC=I64.*)",
R"(.*EltwiseLayerTest.*IS=\(.*\..*\..*\..*\..*\).*eltwiseOpType=Pow.*secondaryInputType=CONSTANT.*)",
// TODO: Issue: 43794
R"(.*(PreprocessTest).*(SetScalePreProcess).*)",
R"(.*(PreprocessTest).*(ReverseInputChannelsPreProcess).*)",
R"(.*(PreprocessTest).*(SetScalePreProcessSetBlob).*)",
R"(.*(PreprocessTest).*(SetScalePreProcessGetBlob).*)",
R"(.*(PreprocessTest).*(SetMeanValuePreProcessSetBlob).*)",
R"(.*(PreprocessTest).*(SetMeanImagePreProcessSetBlob).*)",
R"(.*(PreprocessTest).*(ReverseInputChannelsPreProcessGetBlob).*)",
// TODO: Issue: 41467 -- "unsupported element type f16 op Convert"
R"(.*(ConvertLayerTest).*targetPRC=FP16.*)",
// TODO: Issue: 41462
Expand Down Expand Up @@ -48,9 +51,13 @@ std::vector<std::string> disabledTestPatterns() {
R"(.*(LSTMSequence).*mode=CONVERT_TO_TI_RAND_SEQ_LEN.*)",
R"(.*(smoke_DetectionOutput3In).*)",
R"(.*(smoke_DetectionOutput5In).*)",
// TODO: Issue: 47773
R"(.*(ProposalLayerTest).*)",
R"(.*(ScatterUpdateLayerTest).*)",

// INT8 StridedSlice not supported
R"(.*(LPT/StridedSliceTransformation).*)",
// TODO: Issue: 47219
R"(.*DynamicBatchTest.*)",
};
}
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,8 @@ std::vector<std::string> disabledTestPatterns() {
R"(.*(DSR_GatherND).*)",
// TODO: Issue 26090
".*DSR_GatherStaticDataDynamicIdx.*f32.*1.3.200.304.*",
// TODO: Issue 47315
".*ProposalLayerTest.*",
// TODO: Issue 46755
".*DSR_GatherElements.*"
};
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,10 +58,44 @@ class ProposalLayerTest
static std::string getTestCaseName(testing::TestParamInfo<proposalLayerTestParamsSet> obj);
static std::string SerializeProposalSpecificParams(proposalSpecificParams& params);
InferenceEngine::Blob::Ptr GenerateInput(const InferenceEngine::InputInfo &info) const override;
void Compare(const std::vector<std::vector<std::uint8_t>> &expectedOutputs, const std::vector<InferenceEngine::Blob::Ptr> &actualOutputs) override;
template <class T>
void Compare(const T *expected, const T *actual, std::size_t size,
T threshold, const std::size_t output_index) {
for (std::size_t i = 0; i < size; ++i) {
const auto &ref = expected[i];
const auto &res = actual[i];

// verify until first -1 appears in the 1st output.
if (output_index == 0 &&
CommonTestUtils::ie_abs(ref - static_cast<T>(-1)) <= threshold) {
// output0 shape = {x, 5}
// output1 shape = {x}
// setting the new_size for output1 verification
num_selected_boxes = i / 5;
return;
}

const auto absoluteDifference = CommonTestUtils::ie_abs(res - ref);
if (absoluteDifference <= threshold) {
continue;
}

const auto max = std::max(CommonTestUtils::ie_abs(res),
CommonTestUtils::ie_abs(ref));
float diff =
static_cast<float>(absoluteDifference) / static_cast<float>(max);
ASSERT_TRUE(max != 0 && (diff <= static_cast<float>(threshold)))
<< "Relative comparison of values expected: " << ref
<< " and actual: " << res << " at index " << i
<< " with threshold " << threshold << " failed";
}
}
protected:
void SetUp() override;
void Validate() override;

private:
size_t num_selected_boxes;
};

} // namespace LayerTestsDefinitions
Original file line number Diff line number Diff line change
Expand Up @@ -63,9 +63,57 @@ std::string ProposalLayerTest::getTestCaseName(testing::TestParamInfo<proposalLa
return proposalPramString + result.str();
}

void ProposalLayerTest::Compare(
const std::vector<std::vector<std::uint8_t>> &expectedOutputs,
const std::vector<InferenceEngine::Blob::Ptr> &actualOutputs) {
num_selected_boxes = 0;
for (std::size_t outputIndex = 0; outputIndex < expectedOutputs.size(); ++outputIndex) {
const auto &expected = expectedOutputs[outputIndex];
const auto &actual = actualOutputs[outputIndex];
ASSERT_EQ(expected.size(), actual->byteSize());
const auto &expectedBuffer = expected.data();

auto memory = InferenceEngine::as<InferenceEngine::MemoryBlob>(actual);
IE_ASSERT(memory);
const auto lockedMemory = memory->rmap();
const auto actualBuffer = lockedMemory.as<const std::uint8_t *>();

const auto &precision = actual->getTensorDesc().getPrecision();
auto size = actual->size();

// verifying the first output if there was less proposals than space
// provided,
// num_selected_boxes was set, take this into consideration while verifying the 2nd
// output
if (outputIndex == 1 && num_selected_boxes) {
size = num_selected_boxes;
}

switch (precision) {
case InferenceEngine::Precision::BF16:
Compare(reinterpret_cast<const ngraph::bfloat16 *>(expectedBuffer),
reinterpret_cast<const ngraph::bfloat16 *>(actualBuffer), size,
ngraph::bfloat16(threshold), outputIndex);
break;
case InferenceEngine::Precision::FP16:
Compare(reinterpret_cast<const ngraph::float16 *>(expectedBuffer),
reinterpret_cast<const ngraph::float16 *>(actualBuffer), size,
ngraph::float16(threshold), outputIndex);
break;
case InferenceEngine::Precision::FP32:
Compare<float>(reinterpret_cast<const float *>(expectedBuffer),
reinterpret_cast<const float *>(actualBuffer), size,
threshold, outputIndex);
break;
default:
FAIL() << "Comparator for " << precision << " precision isn't supported";
}
}
}

void ProposalLayerTest::SetUp() {
proposalSpecificParams proposalParams;
std::vector<float> img_info = {225.0f, 225.0f, 1.0f};
std::vector<float> img_info = {3.0f, 3.0f, 1.0f};

std::tie(proposalParams, targetDevice) = this->GetParam();
base_size_type base_size;
Expand Down Expand Up @@ -98,10 +146,11 @@ void ProposalLayerTest::SetUp() {
std::vector<size_t> imageInfoShape = {3};

auto ngPrc = FuncTestUtils::PrecisionUtils::convertIE2nGraphPrc(InferenceEngine::Precision::FP16);
auto params = ngraph::builder::makeParams(ngPrc, {{"scores", scoresShape}, {"boxes", boxesShape}});
// a_ and b_ are a workaround to solve alphabetic param sorting that destroys ordering
auto params = ngraph::builder::makeParams(ngPrc, {{"a_scores", scoresShape}, {"b_boxes", boxesShape}});
auto paramOuts = ngraph::helpers::convert2OutputVector(ngraph::helpers::castOps2Nodes<ngraph::op::Parameter>(params));

auto proposal = std::dynamic_pointer_cast<ngraph::opset1::Proposal>(
auto proposal = std::dynamic_pointer_cast<ngraph::opset4::Proposal>(
ngraph::builder::makeProposal(paramOuts[0], paramOuts[1], img_info, ngPrc,
base_size,
pre_nms_topn,
Expand All @@ -118,23 +167,22 @@ void ProposalLayerTest::SetUp() {
box_coordinate_scale,
framework));

ngraph::ResultVector results{std::make_shared<ngraph::opset1::Result>(proposal)};
ngraph::ResultVector results{
std::make_shared<ngraph::opset1::Result>(proposal->output(0)),
std::make_shared<ngraph::opset1::Result>(proposal->output(1))};
function = std::make_shared<ngraph::Function>(results, params, "proposal");
}

InferenceEngine::Blob::Ptr ProposalLayerTest::GenerateInput(const InferenceEngine::InputInfo &info) const {
InferenceEngine::Blob::Ptr blobPtr;

const std::string name = info.name();
if (name == "scores") {
if (name == "a_scores") {
blobPtr = FuncTestUtils::createAndFillBlobFloat(info.getTensorDesc(), 1, 0, 1000, 8234231);
} else if (name == "boxes") {
} else if (name == "b_boxes") {
blobPtr = FuncTestUtils::createAndFillBlobFloatNormalDistribution(info.getTensorDesc(), 0.0f, 0.2f, 7235346);
}

return blobPtr;
}

// TODO: for validation, reference version is required (#28373)
void ProposalLayerTest::Validate() {}
} // namespace LayerTestsDefinitions
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,11 @@ std::shared_ptr<Node> makeProposal(const ngraph::Output<Node> &class_probs,
attrs.box_size_scale = box_size_scale;
attrs.box_coordinate_scale = box_coordinate_scale;
attrs.framework = framework;
attrs.infer_probs = true;

auto image_shape = makeConstant(ngraph::element::Type_t::f32, {3}, image_info);

return std::make_shared<opset1::Proposal>(class_probs, class_logits, image_shape, attrs);
return std::make_shared<opset4::Proposal>(class_probs, class_logits, image_shape, attrs);
}

} // namespace builder
Expand Down
Loading