Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLN remove unnecessary trailing commas in groupby tests #36059

Merged
merged 1 commit into from
Sep 2, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions pandas/tests/groupby/aggregate/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def func_numba(values, index):
func_numba = numba.jit(func_numba)

data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
Expand Down Expand Up @@ -90,7 +90,7 @@ def func_2(values, index):
func_2 = numba.jit(func_2)

data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
Expand Down Expand Up @@ -121,7 +121,7 @@ def func_1(values, index):
return np.mean(values) - 3.4

data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
expected = grouped.agg(func_1, engine="numba")
Expand All @@ -142,7 +142,7 @@ def func_1(values, index):
)
def test_multifunc_notimplimented(agg_func):
data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
with pytest.raises(NotImplementedError, match="Numba engine can"):
Expand Down
4 changes: 1 addition & 3 deletions pandas/tests/groupby/test_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -946,9 +946,7 @@ def fct(group):
tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
"function", [lambda gr: gr.index, lambda gr: gr.index + 1 - 1],
)
@pytest.mark.parametrize("function", [lambda gr: gr.index, lambda gr: gr.index + 1 - 1])
def test_apply_function_index_return(function):
# GH: 22541
df = pd.DataFrame([1, 2, 2, 2, 1, 2, 3, 1, 3, 1], columns=["id"])
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@


def cartesian_product_for_groupers(result, args, names, fill_value=np.NaN):
""" Reindex to a cartesian production for the groupers,
"""Reindex to a cartesian production for the groupers,
preserving the nature (Categorical) of each grouper
"""

Expand Down
4 changes: 1 addition & 3 deletions pandas/tests/groupby/test_groupby_dropna.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,9 +246,7 @@ def test_groupby_dropna_multi_index_dataframe_agg(dropna, tuples, outputs):
(pd.Period("2020-01-01"), pd.Period("2020-02-01")),
],
)
@pytest.mark.parametrize(
"dropna, values", [(True, [12, 3]), (False, [12, 3, 6],)],
)
@pytest.mark.parametrize("dropna, values", [(True, [12, 3]), (False, [12, 3, 6])])
def test_groupby_dropna_datetime_like_data(
dropna, values, datetime1, datetime2, unique_nulls_fixture, unique_nulls_fixture2
):
Expand Down
4 changes: 1 addition & 3 deletions pandas/tests/groupby/test_groupby_subclass.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,9 +51,7 @@ def test_groupby_preserves_subclass(obj, groupby_func):
tm.assert_series_equal(result1, result2)


@pytest.mark.parametrize(
"obj", [DataFrame, tm.SubclassedDataFrame],
)
@pytest.mark.parametrize("obj", [DataFrame, tm.SubclassedDataFrame])
def test_groupby_resample_preserves_subclass(obj):
# GH28330 -- preserve subclass through groupby.resample()

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_size.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def test_size_on_categorical(as_index):
result = df.groupby(["A", "B"], as_index=as_index).size()

expected = DataFrame(
[[1, 1, 1], [1, 2, 0], [2, 1, 0], [2, 2, 1]], columns=["A", "B", "size"],
[[1, 1, 1], [1, 2, 0], [2, 1, 0], [2, 2, 1]], columns=["A", "B", "size"]
)
expected["A"] = expected["A"].astype("category")
if as_index:
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_timegrouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -780,6 +780,6 @@ def test_grouper_period_index(self):
result = period_series.groupby(period_series.index.month).sum()

expected = pd.Series(
range(0, periods), index=Index(range(1, periods + 1), name=index.name),
range(0, periods), index=Index(range(1, periods + 1), name=index.name)
)
tm.assert_series_equal(result, expected)
6 changes: 3 additions & 3 deletions pandas/tests/groupby/transform/test_numba.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def func(values, index):
func = numba.jit(func)

data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
Expand Down Expand Up @@ -89,7 +89,7 @@ def func_2(values, index):
func_2 = numba.jit(func_2)

data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
grouped = data.groupby(0)
Expand Down Expand Up @@ -120,7 +120,7 @@ def func_1(values, index):
return values + 1

data = DataFrame(
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1],
{0: ["a", "a", "b", "b", "a"], 1: [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=[0, 1]
)
grouped = data.groupby(0)
expected = grouped.transform(func_1, engine="numba")
Expand Down