Skip to content

Commit

Permalink
Backport PR #51640 on branch 2.0.x (COMPAT: Update code for latest Cy…
Browse files Browse the repository at this point in the history
…thon 3 beta) (#51728)

Backport PR #51640: COMPAT: Update code for latest Cython 3 beta

Co-authored-by: Thomas Li <[email protected]>
  • Loading branch information
meeseeksmachine and lithomas1 authored Mar 2, 2023
1 parent fb35381 commit e9d2ae2
Show file tree
Hide file tree
Showing 9 changed files with 44 additions and 19 deletions.
8 changes: 5 additions & 3 deletions .github/workflows/ubuntu.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,6 @@ on:
paths-ignore:
- "doc/**"

env:
PANDAS_CI: 1

permissions:
contents: read

Expand All @@ -32,6 +29,7 @@ jobs:
env_file: [actions-38.yaml, actions-39.yaml, actions-310.yaml, actions-311.yaml]
pattern: ["not single_cpu", "single_cpu"]
pyarrow_version: ["8", "9", "10"]
pandas_ci: [1]
include:
- name: "Downstream Compat"
env_file: actions-38-downstream_compat.yaml
Expand Down Expand Up @@ -76,6 +74,9 @@ jobs:
env_file: actions-310-numpydev.yaml
pattern: "not slow and not network and not single_cpu"
test_args: "-W error::DeprecationWarning -W error::FutureWarning"
# TODO(cython3): Re-enable once next-beta(after beta 1) comes out
# There are some warnings failing the build with -werror
pandas_ci: 0
exclude:
- env_file: actions-38.yaml
pyarrow_version: "8"
Expand All @@ -99,6 +100,7 @@ jobs:
LC_ALL: ${{ matrix.lc_all || '' }}
PANDAS_DATA_MANAGER: ${{ matrix.pandas_data_manager || 'block' }}
PANDAS_COPY_ON_WRITE: ${{ matrix.pandas_copy_on_write || '0' }}
PANDAS_CI: ${{ matrix.pandas_ci }}
TEST_ARGS: ${{ matrix.test_args || '' }}
PYTEST_WORKERS: ${{ contains(matrix.pattern, 'not single_cpu') && 'auto' || '1' }}
PYTEST_TARGET: ${{ matrix.pytest_target || 'pandas' }}
Expand Down
2 changes: 1 addition & 1 deletion pandas/_libs/algos.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,7 @@ cpdef ndarray[int64_t, ndim=1] unique_deltas(const int64_t[:] arr):

@cython.wraparound(False)
@cython.boundscheck(False)
def is_lexsorted(list_of_arrays: list) -> bint:
def is_lexsorted(list_of_arrays: list) -> bool:
cdef:
Py_ssize_t i
Py_ssize_t n, nlevels
Expand Down
22 changes: 16 additions & 6 deletions pandas/_libs/join.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -834,10 +834,10 @@ def asof_join_forward_on_X_by_Y(numeric_t[:] left_values,
return left_indexer, right_indexer


def asof_join_nearest_on_X_by_Y(numeric_t[:] left_values,
numeric_t[:] right_values,
by_t[:] left_by_values,
by_t[:] right_by_values,
def asof_join_nearest_on_X_by_Y(ndarray[numeric_t] left_values,
ndarray[numeric_t] right_values,
ndarray[by_t] left_by_values,
ndarray[by_t] right_by_values,
bint allow_exact_matches=True,
tolerance=None,
bint use_hashtable=True):
Expand All @@ -850,7 +850,17 @@ def asof_join_nearest_on_X_by_Y(numeric_t[:] left_values,
numeric_t bdiff, fdiff

# search both forward and backward
bli, bri = asof_join_backward_on_X_by_Y(
# TODO(cython3):
# Bug in beta1 preventing Cython from choosing
# right specialization when one fused memview is None
# Doesn't matter what type we choose
# (nothing happens anyways since it is None)
# GH 51640
if left_by_values is not None and left_by_values.dtype != object:
by_dtype = f"{left_by_values.dtype}_t"
else:
by_dtype = object
bli, bri = asof_join_backward_on_X_by_Y[f"{left_values.dtype}_t", by_dtype](
left_values,
right_values,
left_by_values,
Expand All @@ -859,7 +869,7 @@ def asof_join_nearest_on_X_by_Y(numeric_t[:] left_values,
tolerance,
use_hashtable
)
fli, fri = asof_join_forward_on_X_by_Y(
fli, fri = asof_join_forward_on_X_by_Y[f"{left_values.dtype}_t", by_dtype](
left_values,
right_values,
left_by_values,
Expand Down
8 changes: 4 additions & 4 deletions pandas/_libs/lib.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -150,11 +150,11 @@ def memory_usage_of_objects(arr: object[:]) -> int64_t:

Does not include the actual bytes of the pointers
"""
i: Py_ssize_t
n: Py_ssize_t
size: int64_t
cdef:
Py_ssize_t i
Py_ssize_t n
int64_t size = 0

size = 0
n = len(arr)
for i in range(n):
size += arr[i].__sizeof__()
Expand Down
8 changes: 6 additions & 2 deletions pandas/_libs/sparse_op_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,9 @@ def get_dispatch(dtypes):

{{for opname, dtype, rdtype in get_dispatch(dtypes)}}


{{if opname == "pow"}}
@cython.cpow(True) # Cython 3 matches Python pow, which isn't what we want here
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef tuple block_op_{{opname}}_{{dtype}}({{dtype}}_t[:] x_,
Expand Down Expand Up @@ -229,7 +231,9 @@ cdef tuple block_op_{{opname}}_{{dtype}}({{dtype}}_t[:] x_,

return out, out_index, {{(opname, 'xfill', 'yfill', dtype) | get_op}}


{{if opname == "pow"}}
@cython.cpow(True) # Cython 3 matches Python pow, which isn't what we want here
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef tuple int_op_{{opname}}_{{dtype}}({{dtype}}_t[:] x_,
Expand Down
2 changes: 1 addition & 1 deletion pandas/_libs/tslibs/offsets.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -4563,7 +4563,7 @@ def roll_qtrday(other: datetime, n: int, month: int,
cdef int _roll_qtrday(npy_datetimestruct* dts,
int n,
int months_since,
str day_opt) nogil except? -1:
str day_opt) except? -1 nogil:
"""
See roll_qtrday.__doc__
"""
Expand Down
1 change: 1 addition & 0 deletions pandas/_libs/tslibs/timedeltas.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -489,6 +489,7 @@ cdef int64_t _item_to_timedelta64(
raise


@cython.cpow(True)
cdef int64_t parse_timedelta_string(str ts) except? -1:
"""
Parse a regular format timedelta string. Return an int64_t (in ns)
Expand Down
4 changes: 3 additions & 1 deletion pandas/_libs/window/aggregations.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@ from numpy cimport (

cnp.import_array()

import cython

from pandas._libs.algos import is_monotonic


Expand Down Expand Up @@ -1733,7 +1735,7 @@ def roll_weighted_var(const float64_t[:] values, const float64_t[:] weights,

# ----------------------------------------------------------------------
# Exponentially weighted moving

@cython.cpow(True)
def ewm(const float64_t[:] vals, const int64_t[:] start, const int64_t[:] end,
int minp, float64_t com, bint adjust, bint ignore_na,
const float64_t[:] deltas=None, bint normalize=True) -> np.ndarray:
Expand Down
8 changes: 7 additions & 1 deletion pandas/core/reshape/merge.py
Original file line number Diff line number Diff line change
Expand Up @@ -2160,7 +2160,13 @@ def injection(obj):
else:
# choose appropriate function by type
func = _asof_by_function(self.direction)
return func(
# TODO(cython3):
# Bug in beta1 preventing Cython from choosing
# right specialization when one fused memview is None
# Doesn't matter what type we choose
# (nothing happens anyways since it is None)
# GH 51640
return func[f"{left_values.dtype}_t", object](
left_values,
right_values,
None,
Expand Down

0 comments on commit e9d2ae2

Please sign in to comment.