Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CPU] prohibit fusing if dropped node contain > 1 child edges #6705

Merged
merged 2 commits into from
Jul 30, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions inference-engine/src/mkldnn_plugin/mkldnn_graph_optimizer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -452,7 +452,7 @@ void MKLDNNGraphOptimizer::FuseConvolutionAndZeroPoints(MKLDNNGraph &graph) {
return false;

auto arg0 = parent0->getParentEdgesAtPort(1)[0]->getParent();
if (arg0->getType() == Input && arg0->isConstant()) {
if (arg0->getChildEdges().size() == 1 && arg0->getType() == Input && arg0->isConstant()) {
if (arg0->getOriginalOutputPrecisionAtPort(0) != Precision::U8)
return false;

Expand Down Expand Up @@ -864,7 +864,11 @@ void MKLDNNGraphOptimizer::FusePoolingAndFakeQuantize(MKLDNNGraph &graph) {
};

auto isSutableChildNode = [](MKLDNNNodePtr node) {
return node->getType() == FakeQuantize && node->getAlgorithm() != Algorithm::FQBinarization;
bool ret = node->getType() == FakeQuantize && node->getAlgorithm() != Algorithm::FQBinarization;
for (size_t i = 1; i < node->getParentEdges().size(); i++) {
ret &= node->getParentEdgesAtPort(i)[0]->getParent()->getChildEdges().size() == 1;
}
return ret;
};

for (int i = 0; i < graphNodes.size(); i++) {
Expand Down Expand Up @@ -1440,12 +1444,17 @@ void MKLDNNGraphOptimizer::FuseBroadcastAndEltwise(MKLDNNGraph &graph) {
std::vector<MKLDNNNodePtr>& graphNodes = graph.GetNodes();

for (auto &graphNode : graphNodes) {
if (graphNode->getType() != Generic
|| graphNode->getTypeStr() != "Broadcast"
if (graphNode->getType() != Broadcast
|| graphNode->getChildEdges().size() != 1lu
|| graphNode->getChildEdgeAt(0)->getChild()->getType() != Eltwise)
continue;

bool ret = true;
for (size_t i = 1; i < graphNode->getParentEdges().size(); i++) {
ret &= graphNode->getParentEdgesAtPort(i)[0]->getParent()->getChildEdges().size() == 1;
}
if (!ret) continue;

MKLDNNNodePtr& broadcastNode = graphNode;
MKLDNNNodePtr eltwiseNode = broadcastNode->getChildEdgeAt(0)->getChild();
eltwiseNode->inDims[broadcastNode->getChildEdgeAt(0)->getOutputNum()]
Expand Down
8 changes: 6 additions & 2 deletions inference-engine/src/mkldnn_plugin/mkldnn_node.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1328,7 +1328,7 @@ bool MKLDNNNode::canBePerformedAsScaleShift(const MKLDNNNode *parentNode) const
if (i == fusingPort)
continue;
auto weightShape = getParentEdgeAt(i)->getDims().ToSizeVector();
if (!isPerTensorOrPerChannelBroadcastable(dataShape, weightShape))
if (getParentEdgesAtPort(i)[0]->getParent()->getChildEdges().size() != 1 || !isPerTensorOrPerChannelBroadcastable(dataShape, weightShape))
return false;
}
return true;
Expand All @@ -1351,7 +1351,11 @@ bool MKLDNNNode::canBePerformedAsScaleShift(const MKLDNNNode *parentNode) const

bool MKLDNNNode::canFuseSimpleOperation(const MKLDNNNodePtr& node) const {
if (node->getType() == FakeQuantize) {
return node->getAlgorithm() != FQBinarization;
bool ret = node->getAlgorithm() != FQBinarization;
for (size_t i = 1; i < node->getParentEdges().size(); i++) {
ret &= node->getParentEdgesAtPort(i)[0]->getParent()->getChildEdges().size() == 1;
}
return ret;
} else if (node->getType() == Eltwise) {
return one_of(node->getAlgorithm(), EltwiseRelu, EltwiseGelu, EltwiseElu, EltwiseSigmoid, EltwiseClamp, EltwiseTanh,
EltwiseSwish, EltwiseHswish, EltwiseMish, EltwiseHsigmoid, EltwiseRoundHalfToEven,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1093,7 +1093,11 @@ bool MKLDNNBinaryConvolutionNode::canFuse(const MKLDNNNodePtr& node) const {
return false;

if (node->getType() == FakeQuantize) {
return node->getAlgorithm() == FQBinarization;
bool ret = node->getAlgorithm() == FQBinarization;
for (size_t i = 1; i < node->getParentEdges().size(); i++) {
ret &= node->getParentEdgesAtPort(i)[0]->getParent()->getChildEdges().size() == 1;
}
return ret;
} else {
return canFuseSimpleOperation(node);
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,8 @@ void MKLDNNConvolutionNode::getSupportedDescriptors() {
}

if (getParentEdges().size() != expectedInputEdgesNum)
IE_THROW() << "Incorrect number of input edges for layer " << getName();
IE_THROW() << "Incorrect number of input edges for layer " << getName() << ", expected: " << expectedInputEdgesNum
<< " actual: " << getParentEdges().size();
if (getChildEdges().empty())
IE_THROW() << "Incorrect number of output edges for layer " << getName();

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
// Copyright (C) 2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "ngraph_functions/builders.hpp"
#include "test_utils/cpu_test_utils.hpp"

using namespace ngraph;
using ngraph::helpers::EltwiseTypes;

namespace SubgraphTestsDefinitions {

class NotFusedConvSimpleOp : public LayerTestsUtils::LayerTestsCommon {
protected:
void SetUp() override {
targetDevice = CommonTestUtils::DEVICE_CPU;

auto inputParams = builder::makeParams(element::f32, {{1, 3, 12, 9}, {1, 16, 12, 9}});
auto paramOuts = helpers::convert2OutputVector(helpers::castOps2Nodes<op::Parameter>(inputParams));

std::shared_ptr<Node> conv;
{
const std::vector<size_t> kernelSize = {3, 3};
const std::vector<size_t> strides = {1, 1};
const std::vector<ptrdiff_t> padBegin = {0, 0};
const std::vector<ptrdiff_t> padEnd = {0, 0};
const std::vector<size_t> dilation = {1, 1};
const size_t numOutChannels = 16;
const op::PadType paddingType = op::PadType::EXPLICIT;
conv = builder::makeConvolution(paramOuts[0], element::f32, kernelSize, strides, padBegin, padEnd, dilation, paddingType, numOutChannels);
}
const auto sharedNode = builder::makeConstant(element::f32, {1, 16, 1, 1}, std::vector<float>{}, true);
const auto postOpCandidate = builder::makeEltwise(conv, sharedNode, EltwiseTypes::ADD);

const auto secondConsumpt = builder::makeEltwise(paramOuts[1], sharedNode, EltwiseTypes::ADD);

NodeVector results{postOpCandidate, secondConsumpt};
function = std::make_shared<ngraph::Function>(results, inputParams, "NotFusedConvSimpleOp");
}
};

TEST_F(NotFusedConvSimpleOp, smoke_CompareWithRefs) {
SKIP_IF_CURRENT_TEST_IS_DISABLED()

Run();
}

} // namespace SubgraphTestsDefinitions