Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TF FE] Add complex type support for rank op #23118

Merged
merged 7 commits into from
Mar 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 17 additions & 1 deletion src/frontends/tensorflow_common/src/op/rank.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,11 @@
//

#include "common_op_table.hpp"
#include "helper_ops/complex_type_mark.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/shape_of.hpp"
#include "openvino/op/squeeze.hpp"
#include "openvino/op/subtract.hpp"

using namespace std;
using namespace ov::op;
Expand All @@ -15,8 +18,21 @@ namespace tensorflow {
namespace op {

ov::OutputVector translate_rank_op(const NodeContext& node) {
default_op_checks(node, 1, {"Rank"});
default_op_checks(node, 1, {"Rank"}, true);
auto input = node.get_input(0);
auto complex_type_mark = as_type_ptr<ComplexTypeMark>(input.get_node_shared_ptr());
if (complex_type_mark) {
input = complex_type_mark->input_value(0);
auto input_shape = make_shared<v3::ShapeOf>(input, ov::element::i32);

auto unsqueeze_input_rank = make_shared<v3::ShapeOf>(input_shape, ov::element::i32);
auto input_rank_with_complex = make_shared<v0::Squeeze>(unsqueeze_input_rank);
// eliminate the extra dimension
auto input_rank =
make_shared<v1::Subtract>(input_rank_with_complex, make_shared<v0::Constant>(ov::element::i32, Shape{}, 1));
set_node_name(node.get_name(), input_rank);
return {input_rank->output(0)};
}
auto input_shape = make_shared<v3::ShapeOf>(input, ov::element::i32);
auto unsqueeze_input_rank = make_shared<v3::ShapeOf>(input_shape, ov::element::i32);
auto input_rank = make_shared<v0::Squeeze>(unsqueeze_input_rank);
Expand Down
42 changes: 42 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_Rank.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
# SPDX-License-Identifier: Apache-2.0

import pytest
import numpy as np
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest

Expand Down Expand Up @@ -33,3 +34,44 @@ def test_rank_basic(self, params, ie_device, precision, ir_version, temp_dir,
self._test(*self.create_rank_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)

class TestComplexRank(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
rng = np.random.default_rng()
assert 'param_real:0' in inputs_info
assert 'param_imag:0' in inputs_info
param_real_shape_1 = inputs_info['param_real:0']
param_imag_shape_1 = inputs_info['param_imag:0']
inputs_data = {}
inputs_data['param_real:0'] = 4 * rng.random(param_real_shape_1).astype(np.float32) - 2
inputs_data['param_imag:0'] = 4 * rng.random(param_imag_shape_1).astype(np.float32) - 2
return inputs_data

def create_rank_net(self, input_shape):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
input_real = tf.compat.v1.placeholder(tf.float32, input_shape, 'param_real')
input_imag = tf.compat.v1.placeholder(tf.float32, input_shape, 'param_imag')
input = tf.raw_ops.Complex(real=input_real, imag=input_imag)
tf.raw_ops.Rank(input=input)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def

return tf_net, None

test_data_basic = [
dict(input_shape=[]),
dict(input_shape=[1]),
dict(input_shape=[2, 6]),
dict(input_shape=[3, 4, 5, 6])
]

@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit_tf_fe
@pytest.mark.nightly
def test_complex_rank(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_rank_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
Loading