Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Good First Issue][TF FE]: Support Angle operation for TensorFlow models #22083

Closed
rkazants opened this issue Jan 10, 2024 · 21 comments · Fixed by #23028
Closed

[Good First Issue][TF FE]: Support Angle operation for TensorFlow models #22083

rkazants opened this issue Jan 10, 2024 · 21 comments · Fixed by #23028
Assignees
Labels
category: TF FE OpenVINO TensorFlow FrontEnd good first issue Good for newcomers no_stale Do not mark as stale
Milestone

Comments

@rkazants
Copy link
Contributor

rkazants commented Jan 10, 2024

Context

OpenVINO component responsible for support of TensorFlow models is called as TensorFlow Frontend (TF FE). TF FE converts a model represented in TensorFlow opset to a model in OpenVINO opset.

In order to infer TensorFlow models with Angle operation by OpenVINO, TF FE needs to be extended with this operation support.

What needs to be done?

For Angle operation support, you need to implement the corresponding loader into TF FE op directory and to register it into the dictionary of Loaders. One loader is responsible for conversion (or decomposition) of one type of TensorFlow operation.

Here is an example of loader implementation for TensorFlow Einsum operation:

OutputVector translate_einsum_op(const NodeContext& node) { 
     auto op_type = node.get_op_type(); 
     TENSORFLOW_OP_VALIDATION(node, op_type == "Einsum", "Internal error: incorrect usage of translate_einsum_op."); 
     auto equation = node.get_attribute<std::string>("equation"); 
  
     OutputVector inputs; 
     for (size_t input_ind = 0; input_ind < node.get_input_size(); ++input_ind) { 
         inputs.push_back(node.get_input(input_ind)); 
     } 
  
     auto einsum = make_shared<Einsum>(inputs, equation); 
     set_node_name(node.get_name(), einsum); 
     return {einsum}; 
 } 

In this example, translate_einsum_op converts TF Einsum into OV Einsum. NodeContext object passed into the loader packs all info about inputs and attributes of Einsum operation. The loader retrieves an attribute of the equation by using the NodeContext::get_attribute() method, prepares input vector, creates Einsum operation from OV opset and returns a vector of outputs.

Responsibility of a loader is to parse operation attributes, prepare inputs and express TF operation via OV operations sub-graph. Example for Einsum demonstrates the resulted sub-graph with one operation. In PR #19007 you can see operation decomposition into multiple node sub-graph.

Once you are done with implementation of the translator, you need to implement the corresponding layer tests test_tf_ApproximateEqual.py and put it into layer_tests/tensorflow_tests directory. Example how to run some layer test:

export TEST_DEVICE=CPU
cd openvino/tests/layer_tests/tensorflow_tests
pytest test_tf_Shape.py -m use_new_frontend

Hint

OpenVINO does not support directly complex tensors. For supporting this, we use ComplexTypeMark that loader for Angle should resolve it or remove this mark so the output will not have this mark after translation. Input complex tensor to Angle is represented as floating-point tensor having additional dimension in the tail to contain real and imaginary parts. See examples of support complex tensors by ComplexAbs loader from #20860.

Example Pull Requests

Resources

Contact points

@openvinotoolkit/openvino-tf-frontend-maintainers

Ticket

No response

@rkazants rkazants added good first issue Good for newcomers no_stale Do not mark as stale labels Jan 10, 2024
@rkazants rkazants moved this to Contributors Needed in Good first issues Jan 10, 2024
@rkazants rkazants added the category: TF FE OpenVINO TensorFlow FrontEnd label Jan 10, 2024
@harryhritik12
Copy link

Hey I Would Like to contribute on this .

@rkazants
Copy link
Contributor Author

Hi @harryhritik12, sure. The task is yours.

Best regards,
Roman

@rkazants rkazants moved this from Contributors Needed to Assigned in Good first issues Jan 10, 2024
@rkazants
Copy link
Contributor Author

rkazants commented Jan 12, 2024

Fyi, please use new link to join Intel DevHub Discord server, if you have not yet joined. The previous one is outdated.

Best regards,
Roman

@rkazants
Copy link
Contributor Author

Hi @harryhritik12, do you have any update on this task? Please let me know in case questions and you can create a preliminary PR to discuss.

Best regards,
Roman

@harryhritik12
Copy link

yes, I am testing it .

@rkazants
Copy link
Contributor Author

Hi @harryhritik12, any update on this task?

@harryhritik12
Copy link

There is an Error in my approach I am try to fix it.

@harryhritik12
Copy link

harryhritik12 commented Jan 20, 2024

Hey , I think I fix an Error now How to check whether program work or not. Basically how test?

@rkazants
Copy link
Contributor Author

Hey , I think I fix an Error now How to check whether program work or not. Basically how test?

Please implement a layer test. You can find details about the layer test in the ticket description.

Best regards,
Roman

@harryhritik12
Copy link

harryhritik12 commented Jan 24, 2024 via email

@rkazants
Copy link
Contributor Author

Hi @harryhritik12, any update on this task?

Best regards,
Roman

@ViswanathBalla22
Copy link

Hi @rkazants I want solve this issue . @harryhritik12 are you working on this issue ? or can you Assignees
I will solve this issue

@ViswanathBalla22
Copy link

.take

Copy link
Contributor

github-actions bot commented Feb 4, 2024

Thanks for being interested in this issue. It looks like this ticket is already assigned to a contributor. Please communicate with the assigned contributor to confirm the status of the issue.

@harryhritik12
Copy link

@ViswanathBalla22 go for it.

@rkazants
Copy link
Contributor Author

This GFI is free

@rghvsh
Copy link
Contributor

rghvsh commented Feb 19, 2024

.take

Copy link
Contributor

Thank you for looking into this issue! Please let us know if you have any questions or require any help.

@rghvsh
Copy link
Contributor

rghvsh commented Feb 19, 2024

Hey, @rkazants! Since we already implemented atan2 can we use that or do the different conditions be hardcoded.

Thanks
Raghav

@rkazants
Copy link
Contributor Author

Hey, @rkazants! Since we already implemented atan2 can we use that or do the different conditions be hardcoded.

Thanks Raghav

Hi @rghvsh, sure, you can use your knowledge gained for aten2. Try not to think about duplicate code at the first step and just implement Angle support. On the second step we can try to avoid the duplication if any.

Best regards,
Roman

@rghvsh
Copy link
Contributor

rghvsh commented Feb 22, 2024

#23028

@mlukasze mlukasze moved this from Assigned to In Review in Good first issues Feb 27, 2024
github-merge-queue bot pushed a commit that referenced this issue Mar 24, 2024
### Details:
 - *Support Angle operation for TensorFlow models*
 
### Tickets:
 - Closes #22083

---------

Co-authored-by: Roman Kazantsev <[email protected]>
@github-project-automation github-project-automation bot moved this from In Review to Closed in Good first issues Mar 24, 2024
@mlukasze mlukasze added this to the 2024.1 milestone Mar 25, 2024
Shubham-Sahoo added a commit to Shubham-Sahoo/openvino that referenced this issue Mar 26, 2024
[Specification] MaxPool-14 and AvgPool-14 - new ceiling mode `CEIL_TORCH` (openvinotoolkit#22930)

 - Add specification for `MaxPool-14` and `AvgPool-14`
- They both introduce a new ceil mode:
`ov::op::RoundingType::CEIL_TORCH`
- The new ceiling mode does not allow the last pooling in a Dimension to
start in the padding area

- [Reference and
Core](openvinotoolkit#22796)
 - [Python API](openvinotoolkit#22966)
 - [PT FE](openvinotoolkit#23027)
- [Downgrade
transformations](openvinotoolkit#23381)

 - 131961

openvinotoolkit#18731

---------

Co-authored-by: Tomasz Jankowski <[email protected]>
Co-authored-by: Katarzyna Mitrus <[email protected]>

[TF FE] Support ApproximateEqual operation for TensorFlow (openvinotoolkit#23351)

 - *Adding operation support for ApproximateEqual operation*
 - *Addresses issue openvinotoolkit#22082 *

---------

Co-authored-by: Roman Kazantsev <[email protected]>

[OV JS] Expose export_model()/import_model() (openvinotoolkit#23366)

- Expose `compiledModel::export_model()`, a method to export a compiled
model to the binary data stream.
- Expose `core::import_model(model_file : Buffer, device_name : str)`, a
method to import a compiled model from a previously exported one.

 - *134820* *134818*

---------

Co-authored-by: Vishniakov Nikolai <[email protected]>

[core] Low precision element iterator and `u2, u3, u6` types (openvinotoolkit#23279)

 - Introduce new low precision types `u2`, `u3`, `u6`.
- Introduce `ov::element::Iterator` for low precision types like `u1,
u2, u3, u4, i4, u6`:
- Gives pointer like access to low precision values in Tensor,
containers etc.
- Can be used by STL algorithms to access data in unified algorithms for
data manipulation.
- Can be used in Constant, Convert operators to replace duplicate
implementations for accessing low precision data (bin-size reduction).
- Can be used for operator reference implementation or plugin if there
is no hardware specific solution.

 - [CVS-126998](https://jira.devtools.intel.com/browse/CVS-126998)
- Part of
[CVS-128024](https://jira.devtools.intel.com/browse/CVS-128024)

[DOCS]  Updated file (openvinotoolkit#23509)

 - *item1*
 - *...*

 - *ticket-id*

Add 'pad' operator support for ov::preprocess::PrePostProcessor (openvinotoolkit#23093)

 - Add 'pad' preprocessor operator
- openvinotoolkit#23068

 - [CVS-121548](https://jira.devtools.intel.com/browse/CVS-121548)

[API][AUTO] Fail to get PERF_COUNT from compiled_model (openvinotoolkit#23123)

 - *Fail to get PERF_COUNT from compiled_model*

 - *CVS-130349*

[GPU] Fix dynamic loop's not matched issue during multiple shapes are inferenced (openvinotoolkit#22806)

- *Fix the issue which second infer with updated shape in dynamic loop
doesn't update sliced layout.*
- *Fix the issue that the optimized reshape doesn't reinterpret output
memory in update_output_layout()*

 - *122739*
 - *131544*

[DOCS] Add docs about ignored subgraphs (openvinotoolkit#23435)

- Add documentation about `nncf.Subgraph`

 - 100999

[TRANSFORMATIONS] Fix Optional to match even with no inputs (openvinotoolkit#23471)

[TRANSFORMATIONS] Fix Optional to match even with no inputs

The Optional pattern type may create a wrong pattern to match if no
inputs are provided to the Optional node. If no inputs present to the
Optional type, it will not create an alternative branch(es) to check
against resulting in the incorrect matching.

Fix that by adding a check for the number of inputs being 0.

Do a minor refactoring/renaming for the readability purposes.

 CSV-133523

Signed-off-by: Andrii Staikov <[email protected]>

---------

Signed-off-by: Andrii Staikov <[email protected]>

Enable Paddle FastSpeech2 model (openvinotoolkit#23311)

 - *Enable Paddle FastSpeech2 model*
     - *fix issue in 'set_value'*
     - *add 'round' op*

 - *CVS-134638*

[Conformance Test] Fix cache test case failure for auto plugin (openvinotoolkit#23473)

- check if the blob size remains the same as it was during the initial
caching of the compiled model, rather than comparing it with a specified
number, such as 1 in this case.
- count the size of cached blobs after the model compilation is
completed on all HW plugin within AUTO plugin.

 - CVS-130395

[GPU] Remove unused formats (openvinotoolkit#23431)

+ Most of them are in onednn weights format.

 - *119476*

[CPU][ARM] Make f16 precision as default for CNN (openvinotoolkit#22839)

Remove mentioning of compatibility folder in mac docs (openvinotoolkit#23542)

 - *item1*
 - *...*

 - *ticket-id*

[TRANSFORMATIONS] Fix ReshapeAMatMul pattern to work with shared node as reshape input (openvinotoolkit#23535)

- *`ReshapeAMatMul` worked incorrect in case of using shared nodes as
reshape input*
 - *Fix: to reconnect reshape input to new `shape_of` pattern*

 - *[CVS-134625](https://jira.devtools.intel.com/browse/CVS-134625)*

[TF FE] Support complex tensors for Reciprocal operations (openvinotoolkit#23355)

- *Extended loader Reciprocal by propagating ComplexTypeMark from input
to output and to represent output complex type tensor as a
floating-point type tensor with an auxiliary dimension that concatenates
real and imaginary parts of complex tensor.*
- *Performed reciprocal for complex numbers.*
- *Wrapped the complex result with ComplexTypeMark and returned the
result*

 - openvinotoolkit#23234

---------

Co-authored-by: Roman Kazantsev <[email protected]>

[GPU] Fix SIMD for non supporting platforms (openvinotoolkit#23540)

 - Check is simd 8 is supported

 - *[CVS-133769](https://jira.devtools.intel.com/browse/CVS-133769)*

[PT FE] Fix typo and improve the error info. (openvinotoolkit#23507)

 - *Fix the typo of the code (then -> than)*
- *Improve the error info here, to let developer know the size of output
if the assertion fails.*

 - *No ticket id*

[PT FE] Fix sporadic issue in quantized tests (openvinotoolkit#23520)

 - *Relax quantized tests condition to remove sporadicity.*

 - *CVS-129734*

[GPU] Fixed not to set GATHER_AXIS_SHAPE_INFO_INDEX when input0 is static (openvinotoolkit#23548)

- This PR fixes `Gather` not to set GATHER_AXIS_SHAPE_INFO_INDEX when
input0 is static.
 - It enables some functional tests again.

Add test for CoreImpl::get_versions() (openvinotoolkit#23336)

Closes [23298](openvinotoolkit#23298)
- [CVS-132140](https://jira.devtools.intel.com/browse/CVS-132140)

---------

Co-authored-by: Oleg Pipikin <[email protected]>

[PT FE] Add ModuleExtension (openvinotoolkit#23536)

 - *Continuation of openvinotoolkit#22867*

 - *CVS-133733*

---------

Co-authored-by: Sergey Lyalin <[email protected]>

[api conformance] Fix batch/hetero plugins config (openvinotoolkit#23547)

 - *item1*
 - *...*

 - *ticket-id*

[Transformations] Added If operation to NMS path propagation for ignore negative indices in Gather (openvinotoolkit#23451)

 - *127874*

[TF FE] Test TextVectorization on white-space string input and Equal on empty string tensor (openvinotoolkit#23572)

**Details:** Test `tf.keras.TextVectorization` on white-space string
input and Equal on empty string tensor.

**Ticket:** 135749

---------

Signed-off-by: Kazantsev, Roman <[email protected]>

[PT FE] Make ModuleExtension  patching in independent function scope (openvinotoolkit#23584)

 - *Make ModuleExtension patching in independent function scope*

 - *ticket-id*

[GPU] Increase FC tile_b size for INT4 shape agnostic kernel  (openvinotoolkit#23532)

- Increased FC tile_B size for INT4 shape agnostic kernel for improving
context processing

 - 133444

[GPU] Enable 8bit compression support on dGPU via oneDNN (openvinotoolkit#22740)

 - Enable 8bit compression support on dGPU via oneDNN
 - Update oneDNN version
 - Enable oneDNN primitives cache

Ticket: 124115

[CPU] Add PagedAttention support (openvinotoolkit#23524)

 - *Support PagedAttention support, depends on:*
- openvino_contrib:
openvinotoolkit/openvino_contrib#867
    - vLLM: ilya-lavrenov/vllm#4
 - *TODO*
    - Models with alibi feature

 - *[134329](https://jira.devtools.intel.com/browse/CVS-134329)*
 - *[134327](https://jira.devtools.intel.com/browse/CVS-134327)*

[GPU] In gemm_tile_kernel, applied to use block read when N and K byte-size is aligned 4. (openvinotoolkit#23400)

- *Element by element read is the bottle-neck in gemm_tiled kernel.
Enable block-read when N and K size are aligned 4byte with N and K are
leftover*.
- *Increasing tile_n_size has performance improvement when m_size and
n_size are not shallow and n_size is aligned at 32.*
 - *Add GEMM_TILE_M/N/K/SIMD environment variables for convenience.*

 - *134279*

---------

Signed-off-by: hyunback <[email protected]>

[CPU] [ARM64] jit eltwise: int8 support (openvinotoolkit#22687)

 - *int8 support*

 - *CVS-128643*

[ONNX] Extended ReduceMax by opsets 13,18,20 (openvinotoolkit#23475)

 - Extended ReduceMax by opsets 13,18,20
 - Updated a using opset for ONNX to 20
 - Added tests for additional supported types
 - Enabled backend tests

  - Closes openvinotoolkit#20555

[CPU] Enable concat nspc layout inplace for urlnet model cases (openvinotoolkit#23454)

- *enable concat nspc layout inplace for channel only cases, with these
concat node use inplace impl, urlnet model gain performance benefits,
and this(intermediate concat node is nspc layout but actually is one
dimension) could be common case especially for models with 1D input*

 - *130282*

[CPU]Fix GPT-J RoPE fusion (openvinotoolkit#23519)

 - *Support new RoPE pattern of GPT-J*
- *Local test shows 17 % improvement for 2nd token latency for BF16 in
`Intel(R) Xeon(R) Platinum 8468`*

 - *CVS-134949*

Torch Compile - New Op Support (openvinotoolkit#23310)

New op support for:
 - torch.export updates
 - benchmarking model support
 - chatglm2 support

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: ynimmaga <[email protected]>
Co-authored-by: Maxim Vafin <[email protected]>
Co-authored-by: suryasidd <[email protected]>

[DOCS] Latency highlight for OV devices + update of Optimize Inference for master (openvinotoolkit#23575)

Jira: 133389

* Added an indication on Latency being the default use for OV devices
* Streamlined the Optimize Inference article for better clarity.

[TF FE] Support complex tensors for OnesLike operation (openvinotoolkit#23445)

 - *Adding support for OnesLike operation on complex type tensor*
- Closes openvinotoolkit#22953

---------

Co-authored-by: Michal Lukaszewski <[email protected]>
Co-authored-by: Roman Kazantsev <[email protected]>

[CI] [GHA] Remove usage of the `SimenB/github-actions-cpu-cores` action (openvinotoolkit#23583)

 - The action does not have a License.
 - `cmake` should figure out the # of cores for parallel.

[CPU] [ARM64] jit select (openvinotoolkit#23450)

 - *[CPU] [AARCH64] jit select*

 - *CVS-135445*

New DB schema for GitHub metrics script (openvinotoolkit#23606)

Improvements and fixes for the script which sends GitHub Workflow
metrics to a database. See also:
[23484](openvinotoolkit#23484)

[JS API] Extract code from CompiledModel getters (openvinotoolkit#23515)

- Extract the same logic structure from `CompileModel::input` and
`CompileModel::output`
- Add a private `CompileModel::get_node` method that gets the specified
input or output node.

Note:
No changes to argument validation or conversion.

 - *127617*

constraints openvino-dev: Limit mpmath<1.4 (openvinotoolkit#23601)

- Limit mpmath because of
pytorch/pytorch#120995 and
sympy/sympy#26273

[GPU] Re-enable memory reuse for gemm (openvinotoolkit#23600)

- Since openvinotoolkit#22726 gemm is derived from multi-stage impl which had memory
reuse flag enforced to false for all sub-classes.
- This patch enables memory reuse back for gemm kernel to reduce memory
consumption.

 - *135361*

[TF FE] Support TensorFlow 2.16 (openvinotoolkit#23562)

**Details:** Support TensorFlow 2.16

**Ticket:** TBD

---------

Signed-off-by: Kazantsev, Roman <[email protected]>

[IE TESTS][OP CONFORMANCE] Move `ConstRanges` range calculation to `InGenData` constructor (openvinotoolkit#23427)

 - *Move static const range initialization to `InData` structure*

 - *[125993](https://jira.devtools.intel.com/browse/CVS-125993)*

Enable new property model_distribution_policy for CPU inference (openvinotoolkit#23077)

 - *Enable new property model_distribution_policy for CPU inference*
 -- *Add C++ interface and test cases*
 -- *Add Python interface and test cases*

 - *CVS-127844*

[CPU] optimize PagedAttention's shape inference (openvinotoolkit#23603)

 - *Specific shape inference for PagedAttention*
 - *...*

 - *ticket-id*

[CPU] [ARM64] jit equal (openvinotoolkit#23266)

 - *[CPU] [AARCH64] jit eltwise Equal

 - *CVS-134691*

[GPU] Fix count non zero for empty input (openvinotoolkit#23597)

- Adds buffer reset to 0 in `count_nonzero` impl in case of empty input
tensor as currently we may try to allocate random amount of memory in
subsequent `gather_nonzero` call

[PyOV] Add Python API for MaxPool-14 and AvgPool-14 (openvinotoolkit#22966)

 - Extend Python API with`MaxPool-14` and `AvgPool-14`
- They both introduce a new ceil mode:
`ov::op::RoundingType::CEIL_TORCH`
- The new ceiling mode does not allow the last pooling in a Dimension to
start in the padding area

 - openvinotoolkit#22930
 - openvinotoolkit#22796
 - openvinotoolkit#23027
 - openvinotoolkit#23381
 - openvinotoolkit#23582

 - 131961

openvinotoolkit#18731

---------

Co-authored-by: Katarzyna Mitrus <[email protected]>

[Spec] Clarify specification for StridedSlice (openvinotoolkit#23039)

- Add notes with descriptions of: Out of Bounds, Indexing in Reverse,
Negative Indices
 - Clarified length of masks
 - Clarified the definition of `-1` value
- Described in detail the behavior of masks, aligned with Reference
Implementation
 - Added more latex-like style, add the examples for the missing masks.

 - 90128

[TRANSFORMATIONS] Remove use of legacy names from transformations (openvinotoolkit#23574)

[TRANSFORMATIONS] Remove use of legacy names from transformations

API function create_ie_output_name() and get_ie_output_name() are
deprecated in a28a000 ("Deprecated functions to operate with legacy
port names (openvinotoolkit#22717)")

Remove usages of create_ie_output_name() in Transformations

CVS-132087
Signed-off-by: Andrii Staikov [email protected]

---------

Signed-off-by: Andrii Staikov [email protected]

[Opset14][Spec] ConvertPromoteTypes-14 specification (openvinotoolkit#23264)

- *This PR introduces specification for ConvertPromoteTypes-14 op -
conversion op used to align two inputs to common type*
- *Operator was introduced for PyTorch Frontend, rules also match
Tensorflow https://www.tensorflow.org/guide/tf_numpy_type_promotion*
- PR with core implementation:
openvinotoolkit#22566
- Draft PR with improvements to core + replacement it PTFe:
openvinotoolkit#22770

 - *129197*

---------

Co-authored-by: Katarzyna Mitrus <[email protected]>

[CPU][ARM] Upgrade to ACL v24.02.1 (openvinotoolkit#22598)

oneDNN PR: openvinotoolkit/oneDNN#227

[API CONFORMANCE] Modify API conformance suite for SW plugins (openvinotoolkit#23557)

 - *Move some properties from mandatory to optional for sw plugins*
 - *...*

 - *[133459](https://jira.devtools.intel.com/browse/CVS-133459)*

Calculate model weights hash in parallel (openvinotoolkit#23605)

- Calculate model weights hash in parallel in case of reading model from
buffer

 - CVS-134771

[DOCS] improve legacy section formatting (openvinotoolkit#23512)

[DOCS] ai legal disclaimer (openvinotoolkit#23587)

[TRANSFORMATIONS] Create python binding for pattern::Optional (openvinotoolkit#23558)

[TRANSFORMATIONS] Create python binding for pattern::Optional

Expose the C++ op::pattern::Optional to Python in order to
simplify patterns creation.
Cover the functionality with the dedicated tests.

CVS-133523

Signed-off-by: Andrii Staikov <[email protected]>

---------

Signed-off-by: Andrii Staikov <[email protected]>

[CPU] Fix SDPA pattern matching (openvinotoolkit#23581)

Limit the Concat layer to have maximum 3 children. The third one is
allowed to be a ShapeOf op only (to support Mixtral).

 - 135375

[chore] Use debug loglevel for github metrics script (openvinotoolkit#23633)

We can switch log level for GitHub metrics script only when the workflow
is restarted with debug logging

[TF FE] Enable parallel execution of TensorFlow Layer 2 python tests (openvinotoolkit#23344)

Addresses issue: openvinotoolkit#20919

- Enables parallel execution of TensorFlow Layer 2 python tests
- Fixes test_tf2_keras_conv_lstm_2d.py and test_tf2_map_fn.py to not
fail during parallel execution
- Appends args in github workflow to enable parallel execution

Errors fixed:
- Due to varying Kera activation function addresses causing the workers
to get different parameter inputs and thus failing. See [known
issue](https://pytest-xdist.readthedocs.io/en/stable/known-limitations.html#order-and-amount-of-test-must-be-consistent)
```
-tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 4, 'kernel_size': (3, 3), 'padding': 'same', 'return_sequences': False, 'activation': <function swish at 0x7f1fadf364d0>}, 'input_shapes': [[2, 5, 20, 30, 2]]} ]
-tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 6, 'kernel_size': (2, 3), 'padding': 'valid', 'dilation_rate': 3, 'recurrent_activation': <function elu at 0x7f1fe6a1a830>, 'return_sequences': True, 'use_bias': True, 'data_format': 'channels_first'}, 'input_shapes': [[2, 5, 1, 40, 30]]} ]
+tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 4, 'kernel_size': (3, 3), 'padding': 'same', 'return_sequences': False, 'activation': <function swish at 0x7f635e4d24d0>}, 'input_shapes': [[2, 5, 20, 30, 2]]} ]
+tensorflow2_keras_tests/test_tf2_keras_conv_lstm_2d.py::TestKerasConvLSTM2D::test_keras_conv_lstm_2d_basic[ ie_device:CPU - precision:FP32 - params:{'params': {'filters': 6, 'kernel_size': (2, 3), 'padding': 'valid', 'dilation_rate': 3, 'recurrent_activation': <function elu at 0x7f6396fa2830>, 'return_sequences': True, 'use_bias': True, 'data_format': 'channels_first'}, 'input_shapes': [[2, 5, 1, 40, 30]]} ]
```

- Due to lambda function definitions giving varying addresses as inputs
```
-tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP32 - params:{'fn': <function TestMapFN.<lambda> at 0x7f66c2c63c70>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
-tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP16 - params:{'fn': <function TestMapFN.<lambda> at 0x7f66c2c63c70>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
+tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP32 - params:{'fn': <function TestMapFN.<lambda> at 0x7f211b56fd00>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
+tensorflow2_keras_tests/test_tf2_map_fn.py::TestMapFN::test_multiple_inputs_outputs_int32[ ie_device:CPU - precision:FP16 - params:{'fn': <function TestMapFN.<lambda> at 0x7f211b56fd00>, 'input_type': tf.int32, 'fn_output_signature': (tf.int32, tf.int32, tf.int32), 'back_prop': True, 'input_names': ['x1', 'x2', 'x3'], 'input_shapes': [[2, 1, 3, 4], [2, 1, 3, 4], [2, 1, 3, 4]]} ]
```

---------

Co-authored-by: Roman Kazantsev <[email protected]>

[ IE TESTS ] Update tensor comparation function according plugin requirments (openvinotoolkit#23226)

- *Comparation function was changed to compare tensors based on element
comparation*
- *`std::abs(ref_value - plugin_value) <= abs_threshold + rel_threshold
* ref_value`*
- *`abs_threshold ` =
std::max(std::numeric_limits::eps<plugin_element_type>(),
std::numeric_limits::eps<ref_element_type>())*
- *`ref_threshold = eps_by_expected_type()`, which is based on half `bit
length of mantissa`*

 - [CVS-133173](https://jira.devtools.intel.com/browse/CVS-133173)
 - [CVS-135540](https://jira.devtools.intel.com/browse/CVS-135540)

---------

Co-authored-by: sbalandi <[email protected]>

[TF FE] Support Angle operation for TensorFlow models (openvinotoolkit#23028)

 - *Support Angle operation for TensorFlow models*

 - Closes openvinotoolkit#22083

---------

Co-authored-by: Roman Kazantsev <[email protected]>

[GPU] Extend gemm to fuse broadcast and reshape layers (openvinotoolkit#23513)

- Fuse `broadcast` and `reshape` layers into `gemm` layer for LLM's 2nd
latency optimization
     - before : [`broadcast`] --> [`reshape`] --> `gemm`
     - after : `gemm`
- `gemm` is extended to have `input0_target_shape`,
`input1_target_shape`, `input0_output_pattern` and
`input1_output_pattern` from `broadcast` and `reshape` layers

 - 128343

---------

Signed-off-by: Andrew Park <[email protected]>

[GPU] Extend pattern for ClampFP16Output (openvinotoolkit#23592)

- By PR(openvinotoolkit#22245),
`clamp_fp16_output` opt pass was moved to ngraph
- Because nodes such as eltwise(`Add`, `Subtract`, `Multiply`, `Divide`)
that were fused into target node `gemm` are not supported in pattern,
corresponding pattern was extended for this purpose

 - 135060

Fix the aten::mv for pytorch models openvinotoolkit#22073 (openvinotoolkit#22677)

 - *item1*
 - *...*
Add aten::mv operator
close openvinotoolkit#22073
 - *ticket-id*

---------

Co-authored-by: Ekaterina Aidova <[email protected]>
Co-authored-by: Michal Lukaszewski <[email protected]>

Remove NGraphFunctions namespace (openvinotoolkit#23627)

 - Remove NGraphFunctions namespace

 - CVS-133379

[PY API] Fix the preoblem that Node.get_attributes() cannot return all attributes (openvinotoolkit#23530)

- extend the `util::DictAttributeSerializer::on_adapter()` method,
making it compatible with `ov::PartialShape` and
`ov::op::util::Variable` types;
 - add extra tests to test the correctness of `Node.get_attributes()`

 - openvinotoolkit#23455

---------

Co-authored-by: Jan Iwaszkiewicz <[email protected]>

[CPU] Correct type configuration for i8 inner_product with f16 output (openvinotoolkit#23610)

 - 136298
 - 136163

Support aten::bucketize for pytorch models openvinotoolkit#23328 (openvinotoolkit#23527)

](openvinotoolkit#23328)
 - Support aten::bucketize for pytorch models

Move ConvertConvertPromoteTypes transformation from Common to MOC (openvinotoolkit#23630)

Move ConvertConvertPromoteTypes transformation from Common to MOC

 N/A

[CPU][ARM] Enable both f16 and f32 kernels for aarch64 and introduce runtime f16 support check (openvinotoolkit#22992)

Inherited from openvinotoolkit#22437

---------

Co-authored-by: Ilya Lavrenov <[email protected]>

[ONNX] Reduced memory consumption while running tests (openvinotoolkit#23628)

 - Significantly reduced amount of using RAM while testing
- May introduce test regression in multi-worker scenario (-n auto), but
it isn't detected while validation

 - 129958

[TF FE] Add testing StringLower and TextVectorization operations on non-ASCII sentences (openvinotoolkit#23641)

**Details:** Add testing non-ASCII sentences for StringLower operation.
Needs to be merged after
openvinotoolkit/openvino_tokenizers#80.

**Ticket:** 135752

---------

Signed-off-by: Kazantsev, Roman <[email protected]>

Symbol Tracking API updated and made public (openvinotoolkit#23136)

- dev_api `ov::DimensionTracker` and `ov::TableOfEquivalence` classes
deleted, logic moved to `ov::Symbol` which is now stored by
`ov::Dimension`
- new implementation moves responsibility to store and report relations
between Symbols directly to the Symbol object. Hence, there is no need
for `ov::TableOfEquivalence` and no need for synchronization point
anymore.
- Equivalence is being tracked by using
[Disjoint-set_data_structure](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)
which uses less memory than previous implementation.

![image](https://github.com/openvinotoolkit/openvino/assets/55839243/f1266f32-976d-44f9-a6ea-cd04dce07407)

![image](https://github.com/openvinotoolkit/openvino/assets/55839243/3108d1ad-0d30-4041-aa93-c4de1f1fb979)

 - *CVS-133123*

Align friendly names uniqueization (openvinotoolkit#22729)

Removed code that makes friendly names unique from Serialization and a
name uniqueness check from Deserializator.
Enabled the mode of ResolveNameCollisions transformation to uniqueize
all friendly names, not only autogenerated in Frontends

 - *CVS-131567*

---------

Co-authored-by: Evgenya Nugmanova <[email protected]>
Co-authored-by: Andrei Kochin <[email protected]>

[CPU][REFACTORING] Use memory access helper methods where possible (openvinotoolkit#23442)

fix coverity issue 1540833 and 1540832 (openvinotoolkit#23635)

 - *fix coverity scan  issue1540833 and issue1540832*

 - *ticket-id*

[CPU] Prohibit fc avx2_vnni_2 decompression for bf16 input (openvinotoolkit#23638)

- The FC changes made in scope of openvinotoolkit#20486 were missed when rebasing
- The context is: Even the system and the node does support bf16
precision we have to fall back to f32 in/out precision
due to lack of support for decompression with bf16 avx2_vnni_2 in oneDNN
fork.
- To cover this limitation an additional type mapping parameter in form
of std::function was introduced for disabling particular type mapping
entry using a runtime check (isa support in this case)

 - 122347
 - 136163

Merged master changes

Update src/frontends/tensorflow_common/src/op/gelu.cpp

updated approximation access
bbielawx pushed a commit to bbielawx/openvino that referenced this issue Apr 12, 2024
…t#23028)

### Details:
 - *Support Angle operation for TensorFlow models*
 
### Tickets:
 - Closes openvinotoolkit#22083

---------

Co-authored-by: Roman Kazantsev <[email protected]>
alvoron pushed a commit to alvoron/openvino that referenced this issue Apr 29, 2024
…t#23028)

### Details:
 - *Support Angle operation for TensorFlow models*
 
### Tickets:
 - Closes openvinotoolkit#22083

---------

Co-authored-by: Roman Kazantsev <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
category: TF FE OpenVINO TensorFlow FrontEnd good first issue Good for newcomers no_stale Do not mark as stale
Projects
Archived in project
Development

Successfully merging a pull request may close this issue.

5 participants