-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF FE] MatrixBandPart operation for TensorFlow Hub models (#23082)
**Details:** `MatrixBandPart` is needed to support Keras StableDiffusion model. This is reserved PR for #22447 **Ticket:** CVS-133786 --------- Signed-off-by: Kazantsev, Roman <[email protected]> Co-authored-by: himanshugupta11002 <[email protected]>
- Loading branch information
1 parent
a5f6308
commit 089fc0d
Showing
5 changed files
with
134 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
90 changes: 90 additions & 0 deletions
90
src/frontends/tensorflow_common/src/op/matrix_band_part.cpp
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
// Copyright (C) 2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include "openvino/op/constant.hpp" | ||
#include "openvino/op/convert.hpp" | ||
#include "openvino/op/less.hpp" | ||
#include "openvino/op/less_eq.hpp" | ||
#include "openvino/op/logical_and.hpp" | ||
#include "openvino/op/logical_or.hpp" | ||
#include "openvino/op/range.hpp" | ||
#include "openvino/op/reshape.hpp" | ||
#include "openvino/op/select.hpp" | ||
#include "openvino/op/shape_of.hpp" | ||
#include "openvino/op/slice.hpp" | ||
#include "openvino/op/subtract.hpp" | ||
#include "openvino/op/unsqueeze.hpp" | ||
#include "utils.hpp" | ||
|
||
using namespace std; | ||
using namespace ov::op; | ||
|
||
namespace ov { | ||
namespace frontend { | ||
namespace tensorflow { | ||
namespace op { | ||
|
||
OutputVector translate_matrix_band_part_op(const NodeContext& node) { | ||
default_op_checks(node, 3, {"MatrixBandPart"}); | ||
|
||
// Input tensor and parameters | ||
auto input = node.get_input(0); | ||
auto num_lower = node.get_input(1); | ||
auto num_upper = node.get_input(2); | ||
|
||
// create scalar auxiliary constants | ||
auto const_zero = make_shared<v0::Constant>(element::i64, Shape{}, 0); | ||
auto const_one = make_shared<v0::Constant>(element::i64, Shape{}, 1); | ||
auto const_two = make_shared<v0::Constant>(element::i64, Shape{}, 2); | ||
|
||
// input has a shape [I, J, K, ..., M, N] | ||
// compute sizes of two last dimensions of M and N | ||
auto input_shape = make_shared<v3::ShapeOf>(input, element::i64); | ||
auto input_rank = make_shared<v3::ShapeOf>(input_shape, element::i64); | ||
auto input_rank_minus_one = make_shared<v1::Subtract>(input_rank, const_one); | ||
auto input_rank_minus_two = make_shared<v1::Subtract>(input_rank, const_two); | ||
auto slice_step = make_shared<v0::Constant>(element::i64, Shape{1}, 1); | ||
auto slice_axis = make_shared<v0::Constant>(element::i64, Shape{1}, 0); | ||
auto m = make_shared<v8::Slice>(input_shape, input_rank_minus_two, input_rank_minus_one, slice_step, slice_axis) | ||
->output(0); | ||
auto n = make_shared<v8::Slice>(input_shape, input_rank_minus_one, input_rank, slice_step, slice_axis)->output(0); | ||
|
||
// generate ranges [0, M) and [0, N) | ||
auto scalar_shape = make_shared<v0::Constant>(element::i64, Shape{0}, vector<int64_t>{}); | ||
m = make_shared<v1::Reshape>(m, scalar_shape, false); | ||
n = make_shared<v1::Reshape>(n, scalar_shape, false); | ||
auto range_m = make_shared<v4::Range>(const_zero, m, const_one, element::i64)->output(0); | ||
auto range_n = make_shared<v4::Range>(const_zero, n, const_one, element::i64)->output(0); | ||
range_m = make_shared<v0::Unsqueeze>(range_m, const_one); | ||
range_n = make_shared<v0::Unsqueeze>(range_n, const_zero); | ||
|
||
// adjust num_lower and num_upper to have them of type i64 | ||
// the same as M and N | ||
// it is needed for in_band computation | ||
num_lower = make_shared<v0::Convert>(num_lower, element::i64); | ||
num_upper = make_shared<v0::Convert>(num_upper, element::i64); | ||
|
||
// compute in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) && (num_upper < 0 || (n-m) <= num_upper) | ||
auto num_lower_less_zero = make_shared<v1::Less>(num_lower, const_zero); | ||
auto i_minus_j = make_shared<v1::Subtract>(range_m, range_n); | ||
auto i_minus_j_less_eq_num_lower = make_shared<v1::LessEqual>(i_minus_j, num_lower); | ||
auto num_upper_less_zero = make_shared<v1::Less>(num_upper, const_zero); | ||
auto j_minus_i = make_shared<v1::Subtract>(range_n, range_m); | ||
auto j_minus_i_less_eq_num_upper = make_shared<v1::LessEqual>(j_minus_i, num_upper); | ||
auto in_band1 = make_shared<v1::LogicalOr>(num_lower_less_zero, i_minus_j_less_eq_num_lower); | ||
auto in_band2 = make_shared<v1::LogicalOr>(num_upper_less_zero, j_minus_i_less_eq_num_upper); | ||
auto in_band = make_shared<v1::LogicalAnd>(in_band1, in_band2); | ||
|
||
// create zero constant of the same type as input | ||
auto zero = create_same_type_const_scalar<int32_t>(input, 0); | ||
|
||
auto result = make_shared<v1::Select>(in_band, input, zero); | ||
|
||
set_node_name(node.get_name(), result); | ||
return {result}; | ||
} | ||
|
||
} // namespace op | ||
} // namespace tensorflow | ||
} // namespace frontend | ||
} // namespace ov |
41 changes: 41 additions & 0 deletions
41
tests/layer_tests/tensorflow_tests/test_tf_MatrixBandPart.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from common.tf_layer_test_class import CommonTFLayerTest | ||
|
||
rng = np.random.default_rng() | ||
|
||
|
||
class TestMatrixBandPart(CommonTFLayerTest): | ||
def _prepare_input(self, inputs_info): | ||
assert 'input:0' in inputs_info | ||
input_shape = inputs_info['input:0'] | ||
inputs_data = {} | ||
inputs_data['input:0'] = rng.integers(-8, 8, input_shape).astype(self.input_type) | ||
return inputs_data | ||
|
||
def create_matrix_band_part_net(self, input_shape, input_type, num_lower, num_upper): | ||
self.input_type = input_type | ||
tf.compat.v1.reset_default_graph() | ||
with tf.compat.v1.Session() as sess: | ||
input_tensor = tf.compat.v1.placeholder(input_type, input_shape, 'input') | ||
tf.raw_ops.MatrixBandPart(input=input_tensor, num_lower=num_lower, num_upper=num_upper) | ||
tf.compat.v1.global_variables_initializer() | ||
tf_net = sess.graph_def | ||
return tf_net, None | ||
|
||
@pytest.mark.parametrize('input_shape', [[5, 5], [3, 4, 4], [1, 2, 5, 5], [3, 5, 4]]) | ||
@pytest.mark.parametrize('input_type', [np.float32, np.int32]) | ||
@pytest.mark.parametrize('num_lower', [-4, -1, 0, 1, 4]) | ||
@pytest.mark.parametrize('num_upper', [-4, -1, 0, 1, 4]) | ||
@pytest.mark.precommit_tf_fe | ||
@pytest.mark.nightly | ||
def test_matrix_band_part_basic(self, input_shape, input_type, num_lower, num_upper, | ||
ie_device, precision, ir_version, temp_dir, | ||
use_legacy_frontend): | ||
self._test(*self.create_matrix_band_part_net(input_shape, input_type, num_lower, num_upper), | ||
ie_device, precision, ir_version, temp_dir=temp_dir, | ||
use_legacy_frontend=use_legacy_frontend) |