Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve examples #3091

Merged
merged 17 commits into from
Dec 4, 2024
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .github/workflows/examples.yml
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@ jobs:
run: cat /proc/cpuinfo
- name: Install NNCF and test requirements
run: |
pip install -e .
KodiaqQ marked this conversation as resolved.
Show resolved Hide resolved
pip install -r tests/cross_fw/examples/requirements.txt
- name: Print installed modules
run: pip list
Expand Down
24 changes: 10 additions & 14 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -119,23 +119,19 @@ nncf_debug/

# NNCF examples
examples/torch/object_detection/eval/
examples/post_training_quantization/onnx/mobilenet_v2/mobilenet_v2_*
examples/post_training_quantization/openvino/mobilenet_v2/mobilenet_v2_*
examples/post_training_quantization/tensorflow/mobilenet_v2/mobilenet_v2_*
examples/post_training_quantization/torch/mobilenet_v2/mobilenet_v2_*
examples/post_training_quantization/torch/ssd300_vgg16/ssd300_vgg16_*
examples/post_training_quantization/openvino/anomaly_stfpm_quantize_with_accuracy_control/stfpm_*
examples/post_training_quantization/openvino/yolov8/yolov8n*
examples/post_training_quantization/openvino/yolov8_quantize_with_accuracy_control/yolov8n*
examples/**/runs/**
examples/**/results/**
examples/llm_compression/openvino/tiny_llama_find_hyperparams/statistics
compressed_graph.dot
original_graph.dot
datasets/**
alexsu52 marked this conversation as resolved.
Show resolved Hide resolved
examples/**/*.xml
examples/**/*.bin
examples/**/*.pt
examples/**/*.onnx
examples/**/statistics
examples/**/runs
examples/**/results
examples/**/metrics.json

# Tests
tests/**/runs/**
tests/**/tmp*/**
open_model_zoo/
nncf-tests.xml
compressed_graph.dot
original_graph.dot
37 changes: 21 additions & 16 deletions examples/post_training_quantization/onnx/mobilenet_v2/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
import re
import subprocess
from pathlib import Path
from typing import List, Optional
from typing import List

import numpy as np
import onnx
Expand All @@ -23,25 +23,26 @@
from sklearn.metrics import accuracy_score
from torchvision import datasets
from torchvision import transforms
from tqdm import tqdm

import nncf
from nncf.common.logging.track_progress import track

ROOT = Path(__file__).parent.resolve()
MODEL_URL = "https://huggingface.co/alexsu52/mobilenet_v2_imagenette/resolve/main/mobilenet_v2_imagenette.onnx"
DATASET_URL = "https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz"
DATASET_PATH = "~/.cache/nncf/datasets"
MODEL_PATH = "~/.cache/nncf/models"
DATASET_PATH = Path().home() / ".cache" / "nncf" / "datasets"
MODEL_PATH = Path().home() / ".cache" / "nncf" / "models"
DATASET_CLASSES = 10


def download_dataset() -> Path:
downloader = FastDownload(base=DATASET_PATH, archive="downloaded", data="extracted")
downloader = FastDownload(base=DATASET_PATH.as_posix(), archive="downloaded", data="extracted")
return downloader.get(DATASET_URL)


def download_model() -> Path:
return download_url(MODEL_URL, Path(MODEL_PATH).resolve())
MODEL_PATH.mkdir(exist_ok=True, parents=True)
return download_url(MODEL_URL, MODEL_PATH.resolve())


def validate(path_to_model: Path, validation_loader: torch.utils.data.DataLoader) -> float:
Expand All @@ -51,7 +52,7 @@ def validate(path_to_model: Path, validation_loader: torch.utils.data.DataLoader
compiled_model = ov.compile_model(path_to_model, device_name="CPU")
output = compiled_model.outputs[0]

for images, target in tqdm(validation_loader):
for images, target in track(validation_loader, description="Validating"):
pred = compiled_model(images)[output]
predictions.append(np.argmax(pred, axis=1))
references.append(target)
Expand All @@ -61,13 +62,17 @@ def validate(path_to_model: Path, validation_loader: torch.utils.data.DataLoader
return accuracy_score(predictions, references)


def run_benchmark(path_to_model: Path, shape: Optional[List[int]] = None, verbose: bool = True) -> float:
command = f"benchmark_app -m {path_to_model} -d CPU -api async -t 15"
if shape is not None:
command += f' -shape [{",".join(str(x) for x in shape)}]'
cmd_output = subprocess.check_output(command, shell=True) # nosec
if verbose:
print(*str(cmd_output).split("\\n")[-9:-1], sep="\n")
def run_benchmark(path_to_model: Path, shape: List[int]) -> float:
command = [
"benchmark_app",
"-m", path_to_model.as_posix(),
"-d", "CPU",
"-api", "async",
"-t", "15",
"-shape", str(shape),
] # fmt: skip
cmd_output = subprocess.check_output(command, text=True)
print(*cmd_output.splitlines()[-8:], sep="\n")
alexsu52 marked this conversation as resolved.
Show resolved Hide resolved
match = re.search(r"Throughput\: (.+?) FPS", str(cmd_output))
return float(match.group(1))

Expand Down Expand Up @@ -136,9 +141,9 @@ def transform_fn(data_item):
print(f"[2/7] Save INT8 model: {int8_model_path}")

print("[3/7] Benchmark FP32 model:")
fp32_fps = run_benchmark(fp32_model_path, shape=[1, 3, 224, 224], verbose=True)
fp32_fps = run_benchmark(fp32_model_path, shape=[1, 3, 224, 224])
print("[4/7] Benchmark INT8 model:")
int8_fps = run_benchmark(int8_model_path, shape=[1, 3, 224, 224], verbose=True)
int8_fps = run_benchmark(int8_model_path, shape=[1, 3, 224, 224])

print("[5/7] Validate ONNX FP32 model in OpenVINO:")
fp32_top1 = validate(fp32_model_path, val_loader)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,15 +16,15 @@

import openvino as ov
import torch
from tqdm import tqdm
from ultralytics.cfg import get_cfg
from ultralytics.engine.validator import BaseValidator as Validator
from ultralytics.models.yolo import YOLO
from ultralytics.models.yolo.segment.val import SegmentationValidator
from ultralytics.utils import DEFAULT_CFG
from ultralytics.utils.metrics import ConfusionMatrix

from examples.post_training_quantization.onnx.yolov8_quantize_with_accuracy_control.main import prepare_validation
from examples.post_training_quantization.onnx.yolov8_quantize_with_accuracy_control.main import print_statistics
from nncf.common.logging.track_progress import track

ROOT = Path(__file__).parent.resolve()
MODEL_NAME = "yolov8n-seg"
Expand All @@ -37,7 +37,7 @@
def validate_ov_model(
ov_model: ov.Model,
data_loader: torch.utils.data.DataLoader,
validator: Validator,
validator: SegmentationValidator,
num_samples: Optional[int] = None,
) -> Tuple[Dict, int, int]:
validator.seen = 0
Expand All @@ -47,7 +47,7 @@ def validate_ov_model(
validator.confusion_matrix = ConfusionMatrix(nc=validator.nc)
compiled_model = ov.compile_model(ov_model, device_name="CPU")
num_outputs = len(compiled_model.outputs)
for batch_i, batch in enumerate(data_loader):
for batch_i, batch in enumerate(track(data_loader, description="Validating")):
if num_samples is not None and batch_i == num_samples:
break
batch = validator.preprocess(batch)
Expand All @@ -65,12 +65,17 @@ def validate_ov_model(
return stats, validator.seen, validator.nt_per_class.sum()


def run_benchmark(model_path: str, config) -> float:
command = f"benchmark_app -m {model_path} -d CPU -api async -t 30"
command += f' -shape "[1,3,{config.imgsz},{config.imgsz}]"'
cmd_output = subprocess.check_output(command, shell=True) # nosec

match = re.search(r"Throughput\: (.+?) FPS", str(cmd_output))
def run_benchmark(model_path: Path, config) -> float:
command = [
"benchmark_app",
"-m", model_path.as_posix(),
"-d", "CPU",
"-api", "async",
"-t", "30",
"-shape", str([1, 3, config.imgsz, config.imgsz]),
] # fmt: skip
cmd_output = subprocess.check_output(command, text=True)
match = re.search(r"Throughput\: (.+?) FPS", cmd_output)
return float(match.group(1))


Expand All @@ -96,11 +101,11 @@ def run_benchmark(model_path: str, config) -> float:
validator, data_loader = prepare_validation(YOLO(ROOT / f"{MODEL_NAME}.pt"), args)

print("[5/7] Validate OpenVINO FP32 model:")
fp32_stats, total_images, total_objects = validate_ov_model(fp32_ov_model, tqdm(data_loader), validator)
fp32_stats, total_images, total_objects = validate_ov_model(fp32_ov_model, data_loader, validator)
print_statistics(fp32_stats, total_images, total_objects)

print("[6/7] Validate OpenVINO INT8 model:")
int8_stats, total_images, total_objects = validate_ov_model(int8_ov_model, tqdm(data_loader), validator)
int8_stats, total_images, total_objects = validate_ov_model(int8_ov_model, data_loader, validator)
print_statistics(int8_stats, total_images, total_objects)

print("[7/7] Report:")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,28 +13,32 @@
from pathlib import Path
from typing import Any, Dict, Tuple

import numpy as np
import onnx
import onnxruntime
import torch
from tqdm import tqdm
from ultralytics.cfg import get_cfg
from ultralytics.data.converter import coco80_to_coco91_class
from ultralytics.data.utils import check_det_dataset
from ultralytics.engine.validator import BaseValidator as Validator
from ultralytics.models.yolo import YOLO
from ultralytics.models.yolo.segment.val import SegmentationValidator
from ultralytics.utils import DATASETS_DIR
from ultralytics.utils import DEFAULT_CFG
from ultralytics.utils import ops
from ultralytics.utils.metrics import ConfusionMatrix

import nncf
from nncf.common.logging.track_progress import track

MODEL_NAME = "yolov8n-seg"

ROOT = Path(__file__).parent.resolve()


def validate(
model: onnx.ModelProto, data_loader: torch.utils.data.DataLoader, validator: Validator, num_samples: int = None
model: onnx.ModelProto,
data_loader: torch.utils.data.DataLoader,
validator: SegmentationValidator,
num_samples: int = None,
) -> Tuple[Dict, int, int]:
validator.seen = 0
validator.jdict = []
Expand All @@ -49,7 +53,7 @@ def validate(
output_names = [output.name for output in session.get_outputs()]
num_outputs = len(output_names)

for batch_i, batch in enumerate(data_loader):
for batch_i, batch in enumerate(track(data_loader, description="Validating")):
if num_samples is not None and batch_i == num_samples:
break
batch = validator.preprocess(batch)
Expand All @@ -71,7 +75,7 @@ def validate(
return stats, validator.seen, validator.nt_per_class.sum()


def print_statistics(stats: np.ndarray, total_images: int, total_objects: int) -> None:
def print_statistics(stats: Dict[str, float], total_images: int, total_objects: int) -> None:
print("Metrics(Box):")
mp, mr, map50, mean_ap = (
stats["metrics/precision(B)"],
Expand All @@ -84,38 +88,35 @@ def print_statistics(stats: np.ndarray, total_images: int, total_objects: int) -
pf = "%20s" + "%12i" * 2 + "%12.3g" * 4 # print format
print(pf % ("all", total_images, total_objects, mp, mr, map50, mean_ap))

# print the mask metrics for segmentation
if "metrics/precision(M)" in stats:
print("Metrics(Mask):")
s_mp, s_mr, s_map50, s_mean_ap = (
stats["metrics/precision(M)"],
stats["metrics/recall(M)"],
stats["metrics/mAP50(M)"],
stats["metrics/mAP50-95(M)"],
)
# Print results
s = ("%20s" + "%12s" * 6) % ("Class", "Images", "Labels", "Precision", "Recall", "[email protected]", "[email protected]:.95")
print(s)
pf = "%20s" + "%12i" * 2 + "%12.3g" * 4 # print format
print(pf % ("all", total_images, total_objects, s_mp, s_mr, s_map50, s_mean_ap))


def prepare_validation(model: YOLO, args: Any) -> Tuple[Validator, torch.utils.data.DataLoader]:
validator = model.task_map[model.task]["validator"](args=args)
validator.data = check_det_dataset(args.data)
validator.stride = 32
print("Metrics(Mask):")
s_mp, s_mr, s_map50, s_mean_ap = (
stats["metrics/precision(M)"],
stats["metrics/recall(M)"],
stats["metrics/mAP50(M)"],
stats["metrics/mAP50-95(M)"],
)
# Print results
s = ("%20s" + "%12s" * 6) % ("Class", "Images", "Labels", "Precision", "Recall", "[email protected]", "[email protected]:.95")
print(s)
pf = "%20s" + "%12i" * 2 + "%12.3g" * 4 # print format
print(pf % ("all", total_images, total_objects, s_mp, s_mr, s_map50, s_mean_ap))

data_loader = validator.get_dataloader(f"{DATASETS_DIR}/coco128-seg", 1)

def prepare_validation(model: YOLO, args: Any) -> Tuple[SegmentationValidator, torch.utils.data.DataLoader]:
validator: SegmentationValidator = model.task_map[model.task]["validator"](args=args)
validator.data = check_det_dataset(args.data)
validator.stride = 32
validator.is_coco = True
validator.class_map = coco80_to_coco91_class()
validator.names = model.model.names
validator.metrics.names = validator.names
validator.nc = model.model.model[-1].nc
validator.nm = 32
validator.process = ops.process_mask
validator.plot_masks = []

coco_data_path = DATASETS_DIR / "coco128-seg"
data_loader = validator.get_dataloader(coco_data_path.as_posix(), 1)

return validator, data_loader


Expand All @@ -129,7 +130,7 @@ def prepare_onnx_model(model: YOLO, model_name: str) -> Tuple[onnx.ModelProto, P


def quantize_ac(
model: onnx.ModelProto, data_loader: torch.utils.data.DataLoader, validator_ac: Validator
model: onnx.ModelProto, data_loader: torch.utils.data.DataLoader, validator_ac: SegmentationValidator
) -> onnx.ModelProto:
input_name = model.graph.input[0].name

Expand All @@ -140,7 +141,7 @@ def transform_fn(data_item: Dict):
def validation_ac(
val_model: onnx.ModelProto,
validation_loader: torch.utils.data.DataLoader,
validator: Validator,
validator: SegmentationValidator,
num_samples: int = None,
) -> float:
validator.seen = 0
Expand All @@ -155,7 +156,6 @@ def validation_ac(
output_names = [output.name for output in session.get_outputs()]
num_outputs = len(output_names)

counter = 0
for batch_i, batch in enumerate(validation_loader):
KodiaqQ marked this conversation as resolved.
Show resolved Hide resolved
if num_samples is not None and batch_i == num_samples:
break
Expand All @@ -172,13 +172,12 @@ def validation_ac(
]
preds = validator.postprocess(preds)
validator.update_metrics(preds, batch)
counter += 1

stats = validator.get_stats()
if num_outputs == 1:
stats_metrics = stats["metrics/mAP50-95(B)"]
else:
stats_metrics = stats["metrics/mAP50-95(M)"]
print(f"Validate: dataset length = {counter}, metric value = {stats_metrics:.3f}")
alexsu52 marked this conversation as resolved.
Show resolved Hide resolved
return stats_metrics, None

quantization_dataset = nncf.Dataset(data_loader, transform_fn)
Expand Down Expand Up @@ -213,8 +212,6 @@ def validation_ac(


def run_example():
MODEL_NAME = "yolov8n-seg"

model = YOLO(ROOT / f"{MODEL_NAME}.pt")
args = get_cfg(cfg=DEFAULT_CFG)
args.data = "coco128-seg.yaml"
Expand All @@ -231,11 +228,11 @@ def run_example():
print(f"[2/5] Save INT8 model: {int8_model_path}")

print("[3/5] Validate ONNX FP32 model:")
fp_stats, total_images, total_objects = validate(fp32_model, tqdm(data_loader), validator)
fp_stats, total_images, total_objects = validate(fp32_model, data_loader, validator)
print_statistics(fp_stats, total_images, total_objects)

print("[4/5] Validate ONNX INT8 model:")
q_stats, total_images, total_objects = validate(int8_model, tqdm(data_loader), validator)
q_stats, total_images, total_objects = validate(int8_model, data_loader, validator)
print_statistics(q_stats, total_images, total_objects)

print("[5/5] Report:")
Expand Down
Loading
Loading