Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bbox/tracking 2D/3D list confidence #365

Merged
merged 7 commits into from
Dec 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,9 @@ Released on December, XX, 2022.
- New Features:
- Added YOLOv5 as an inference-only tool ([#360](https://github.com/opendr-eu/opendr/pull/360)).
- Added Continual Transformer Encoders ([#317](https://github.com/opendr-eu/opendr/pull/317)).
- Bug Fixes:
- Fixed `BoundingBoxList`, `TrackingAnnotationList`, `BoundingBoxList3D` and `TrackingAnnotationList3D` confidence warnings ([#365](https://github.com/opendr-eu/opendr/pull/365)).
- Fixed undefined `image_id` and `segmentation` for COCO `BoundingBoxList` ([#365](https://github.com/opendr-eu/opendr/pull/365)).

## Version 1.1.1
Released on June, 30th, 2022.
Expand Down
58 changes: 45 additions & 13 deletions src/opendr/engine/target.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,11 +437,13 @@ class BoundingBoxList(Target):
"""
def __init__(
self,
boxes,
boxes=None,
image_id=-1,
):
super().__init__()
self.data = boxes
self.confidence = np.mean([box.confidence for box in self.data])
self.data = [] if boxes is None else boxes
self.image_id = image_id
self.__compute_confidence()

@staticmethod
def from_coco(boxes_coco, image_id=0):
Expand All @@ -451,6 +453,8 @@ def from_coco(boxes_coco, image_id=0):
for i in range(count):
if 'segmentation' in boxes_coco[i]:
segmentation = boxes_coco[i]['segmentation']
else:
segmentation = []
if 'iscrowd' in boxes_coco[i]:
iscrowd = boxes_coco[i]['iscrowd']
else:
Expand Down Expand Up @@ -481,10 +485,17 @@ def mot(self, with_confidence=True):

return result

def add_box(self, box: BoundingBox):
self.data.append(box)
self.__compute_confidence()

@property
def boxes(self):
return self.data

def __compute_confidence(self):
self.confidence = sum([box.confidence for box in self.data], 0) / max(1, len(self.data))

def __getitem__(self, idx):
return self.boxes[idx]

Expand Down Expand Up @@ -578,11 +589,11 @@ class TrackingAnnotationList(Target):
"""
def __init__(
self,
boxes,
annotations=None,
):
super().__init__()
self.data = boxes
self.confidence = np.mean([box.confidence for box in self.data])
self.data = [] if annotations is None else annotations
self.__compute_confidence()

@staticmethod
def from_mot(data):
Expand All @@ -603,10 +614,17 @@ def mot(self, with_confidence=True):
def bounding_box_list(self):
return BoundingBoxList([box.bounding_box() for box in self.data])

def add_annotation(self, annotation: TrackingAnnotation):
self.data.append(annotation)
self.__compute_confidence()

@property
def boxes(self):
return self.data

def __compute_confidence(self):
self.confidence = sum([box.confidence for box in self.data], 0) / max(1, len(self.data))

def __getitem__(self, idx):
return self.boxes[idx]

Expand Down Expand Up @@ -723,12 +741,12 @@ class BoundingBox3DList(Target):
"""

def __init__(
self,
bounding_boxes_3d
self,
bounding_boxes_3d=None
):
super().__init__()
self.data = bounding_boxes_3d
self.confidence = None if len(self.data) == 0 else np.mean([box.confidence for box in self.data])
self.data = [] if bounding_boxes_3d is None else bounding_boxes_3d
self.__compute_confidence()

@staticmethod
def from_kitti(boxes_kitti):
Expand Down Expand Up @@ -803,10 +821,17 @@ def kitti(self):

return result

def add_box(self, box: BoundingBox3D):
self.data.append(box)
self.__compute_confidence()

@property
def boxes(self):
return self.data

def __compute_confidence(self):
self.confidence = sum([box.confidence for box in self.data], 0) / max(1, len(self.data))

def __getitem__(self, idx):
return self.boxes[idx]

Expand Down Expand Up @@ -910,11 +935,11 @@ class TrackingAnnotation3DList(Target):
"""
def __init__(
self,
tracking_bounding_boxes_3d
annotations_3d=None
):
super().__init__()
self.data = tracking_bounding_boxes_3d
self.confidence = None if len(self.data) == 0 else np.mean([box.confidence for box in self.data])
self.data = [] if annotations_3d is None else annotations_3d
self.__compute_confidence()

@staticmethod
def from_kitti(boxes_kitti, ids, frames=None):
Expand Down Expand Up @@ -1004,9 +1029,16 @@ def kitti(self, with_tracking_info=True):
def boxes(self):
return self.data

def add_annotation(self, annotation: TrackingAnnotation3D):
self.data.append(annotation)
self.__compute_confidence()

def bounding_box_3d_list(self):
return BoundingBox3DList([box.bounding_box_3d() for box in self.data])

def __compute_confidence(self):
self.confidence = sum([box.confidence for box in self.data], 0) / max(1, len(self.data))

def __getitem__(self, idx):
return self.boxes[idx]

Expand Down