Skip to content

Commit

Permalink
Add confusion matrix tools analysis (#93)
Browse files Browse the repository at this point in the history
  • Loading branch information
akmalulkhairin authored Mar 9, 2022
1 parent 8a05ea0 commit 077ae5d
Showing 1 changed file with 268 additions and 0 deletions.
268 changes: 268 additions & 0 deletions tools/analysis_tools/confusion_matrix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os

import matplotlib.pyplot as plt
import mmcv
import numpy as np
import torch
from matplotlib.ticker import MultipleLocator
from mmcv import Config, DictAction
from mmcv.ops import nms_rotated
from mmdet.datasets import build_dataset

from mmrotate.core.bbox import rbbox_overlaps


def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from detection results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test .pkl result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='plasma',
help='theme of the matrix color map')
parser.add_argument(
'--score-thr',
type=float,
default=0.3,
help='score threshold to filter detection bboxes')
parser.add_argument(
'--tp-iou-thr',
type=float,
default=0.5,
help='IoU threshold to be considered as matched')
parser.add_argument(
'--nms-iou-thr',
type=float,
default=None,
help='nms IoU threshold, only applied when users want to change the'
'nms IoU threshold.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args


def calculate_confusion_matrix(dataset,
results,
score_thr=0,
nms_iou_thr=None,
tp_iou_thr=0.5):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of detection results in each image.
score_thr (float|optional): Score threshold to filter bboxes.
Default: 0.
nms_iou_thr (float|optional): nms IoU threshold, the detection results
have done nms in the detector, only applied when users want to
change the nms IoU threshold. Default: None.
tp_iou_thr (float|optional): IoU threshold to be considered as matched.
Default: 0.5.
"""
num_classes = len(dataset.CLASSES)
confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1])
assert len(dataset) == len(results)
prog_bar = mmcv.ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
if isinstance(per_img_res, tuple):
res_bboxes, _ = per_img_res
else:
res_bboxes = per_img_res
ann = dataset.get_ann_info(idx)
gt_bboxes = ann['bboxes']
labels = ann['labels']
analyze_per_img_dets(confusion_matrix, gt_bboxes, labels, res_bboxes,
score_thr, tp_iou_thr, nms_iou_thr)
prog_bar.update()
return confusion_matrix


def analyze_per_img_dets(confusion_matrix,
gt_bboxes,
gt_labels,
result,
score_thr=0,
tp_iou_thr=0.5,
nms_iou_thr=None):
"""Analyze detection results on each image.
Args:
confusion_matrix (ndarray): The confusion matrix,
has shape (num_classes + 1, num_classes + 1).
gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4).
gt_labels (ndarray): Ground truth labels, has shape (num_gt).
result (ndarray): Detection results, has shape
(num_classes, num_bboxes, 5).
score_thr (float): Score threshold to filter bboxes.
Default: 0.
tp_iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
nms_iou_thr (float|optional): nms IoU threshold, the detection results
have done nms in the detector, only applied when users want to
change the nms IoU threshold. Default: None.
"""
true_positives = np.zeros_like(gt_labels)
for det_label, det_bboxes in enumerate(result):
det_bboxes = torch.from_numpy(det_bboxes).float()
gt_bboxes = torch.from_numpy(gt_bboxes).float()
if nms_iou_thr:
det_bboxes, _ = nms_rotated(
det_bboxes[:, :5],
det_bboxes[:, -1],
nms_iou_thr,
score_threshold=score_thr)
ious = rbbox_overlaps(det_bboxes[:, :5], gt_bboxes)
for i, det_bbox in enumerate(det_bboxes):
score = det_bbox[5]
det_match = 0
if score >= score_thr:
for j, gt_label in enumerate(gt_labels):
if ious[i, j] >= tp_iou_thr:
det_match += 1
if gt_label == det_label:
true_positives[j] += 1 # TP
confusion_matrix[gt_label, det_label] += 1
if det_match == 0: # BG FP
confusion_matrix[-1, det_label] += 1
for num_tp, gt_label in zip(true_positives, gt_labels):
if num_tp == 0: # FN
confusion_matrix[gt_label, -1] += 1


def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='plasma'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `plasma`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100

num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
plt.colorbar(mappable=im, ax=ax)

title_font = {'weight': 'bold', 'size': 12}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 10}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)

# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)

# draw grid
ax.grid(True, which='minor', linestyle='-')

# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)

ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')

# draw confution matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(
int(confusion_matrix[
i,
j]) if not np.isnan(confusion_matrix[i, j]) else -1),
ha='center',
va='center',
color='w',
size=7)

ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1

fig.tight_layout()
if save_dir is not None:
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()


def main():
args = parse_args()

cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)

results = mmcv.load(args.prediction_path)
assert isinstance(results, list)
if isinstance(results[0], list):
pass
elif isinstance(results[0], tuple):
results = [result[0] for result in results]
else:
raise TypeError('invalid type of prediction results')

if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
dataset = build_dataset(cfg.data.test)

confusion_matrix = calculate_confusion_matrix(dataset, results,
args.score_thr,
args.nms_iou_thr,
args.tp_iou_thr)
plot_confusion_matrix(
confusion_matrix,
dataset.CLASSES + ('background', ),
save_dir=args.save_dir,
show=args.show)


if __name__ == '__main__':
main()

0 comments on commit 077ae5d

Please sign in to comment.