-
Notifications
You must be signed in to change notification settings - Fork 566
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add confusion matrix tools analysis (#93)
- Loading branch information
1 parent
8a05ea0
commit 077ae5d
Showing
1 changed file
with
268 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import argparse | ||
import os | ||
|
||
import matplotlib.pyplot as plt | ||
import mmcv | ||
import numpy as np | ||
import torch | ||
from matplotlib.ticker import MultipleLocator | ||
from mmcv import Config, DictAction | ||
from mmcv.ops import nms_rotated | ||
from mmdet.datasets import build_dataset | ||
|
||
from mmrotate.core.bbox import rbbox_overlaps | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Generate confusion matrix from detection results') | ||
parser.add_argument('config', help='test config file path') | ||
parser.add_argument( | ||
'prediction_path', help='prediction path where test .pkl result') | ||
parser.add_argument( | ||
'save_dir', help='directory where confusion matrix will be saved') | ||
parser.add_argument( | ||
'--show', action='store_true', help='show confusion matrix') | ||
parser.add_argument( | ||
'--color-theme', | ||
default='plasma', | ||
help='theme of the matrix color map') | ||
parser.add_argument( | ||
'--score-thr', | ||
type=float, | ||
default=0.3, | ||
help='score threshold to filter detection bboxes') | ||
parser.add_argument( | ||
'--tp-iou-thr', | ||
type=float, | ||
default=0.5, | ||
help='IoU threshold to be considered as matched') | ||
parser.add_argument( | ||
'--nms-iou-thr', | ||
type=float, | ||
default=None, | ||
help='nms IoU threshold, only applied when users want to change the' | ||
'nms IoU threshold.') | ||
parser.add_argument( | ||
'--cfg-options', | ||
nargs='+', | ||
action=DictAction, | ||
help='override some settings in the used config, the key-value pair ' | ||
'in xxx=yyy format will be merged into config file. If the value to ' | ||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | ||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | ||
'Note that the quotation marks are necessary and that no white space ' | ||
'is allowed.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def calculate_confusion_matrix(dataset, | ||
results, | ||
score_thr=0, | ||
nms_iou_thr=None, | ||
tp_iou_thr=0.5): | ||
"""Calculate the confusion matrix. | ||
Args: | ||
dataset (Dataset): Test or val dataset. | ||
results (list[ndarray]): A list of detection results in each image. | ||
score_thr (float|optional): Score threshold to filter bboxes. | ||
Default: 0. | ||
nms_iou_thr (float|optional): nms IoU threshold, the detection results | ||
have done nms in the detector, only applied when users want to | ||
change the nms IoU threshold. Default: None. | ||
tp_iou_thr (float|optional): IoU threshold to be considered as matched. | ||
Default: 0.5. | ||
""" | ||
num_classes = len(dataset.CLASSES) | ||
confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1]) | ||
assert len(dataset) == len(results) | ||
prog_bar = mmcv.ProgressBar(len(results)) | ||
for idx, per_img_res in enumerate(results): | ||
if isinstance(per_img_res, tuple): | ||
res_bboxes, _ = per_img_res | ||
else: | ||
res_bboxes = per_img_res | ||
ann = dataset.get_ann_info(idx) | ||
gt_bboxes = ann['bboxes'] | ||
labels = ann['labels'] | ||
analyze_per_img_dets(confusion_matrix, gt_bboxes, labels, res_bboxes, | ||
score_thr, tp_iou_thr, nms_iou_thr) | ||
prog_bar.update() | ||
return confusion_matrix | ||
|
||
|
||
def analyze_per_img_dets(confusion_matrix, | ||
gt_bboxes, | ||
gt_labels, | ||
result, | ||
score_thr=0, | ||
tp_iou_thr=0.5, | ||
nms_iou_thr=None): | ||
"""Analyze detection results on each image. | ||
Args: | ||
confusion_matrix (ndarray): The confusion matrix, | ||
has shape (num_classes + 1, num_classes + 1). | ||
gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4). | ||
gt_labels (ndarray): Ground truth labels, has shape (num_gt). | ||
result (ndarray): Detection results, has shape | ||
(num_classes, num_bboxes, 5). | ||
score_thr (float): Score threshold to filter bboxes. | ||
Default: 0. | ||
tp_iou_thr (float): IoU threshold to be considered as matched. | ||
Default: 0.5. | ||
nms_iou_thr (float|optional): nms IoU threshold, the detection results | ||
have done nms in the detector, only applied when users want to | ||
change the nms IoU threshold. Default: None. | ||
""" | ||
true_positives = np.zeros_like(gt_labels) | ||
for det_label, det_bboxes in enumerate(result): | ||
det_bboxes = torch.from_numpy(det_bboxes).float() | ||
gt_bboxes = torch.from_numpy(gt_bboxes).float() | ||
if nms_iou_thr: | ||
det_bboxes, _ = nms_rotated( | ||
det_bboxes[:, :5], | ||
det_bboxes[:, -1], | ||
nms_iou_thr, | ||
score_threshold=score_thr) | ||
ious = rbbox_overlaps(det_bboxes[:, :5], gt_bboxes) | ||
for i, det_bbox in enumerate(det_bboxes): | ||
score = det_bbox[5] | ||
det_match = 0 | ||
if score >= score_thr: | ||
for j, gt_label in enumerate(gt_labels): | ||
if ious[i, j] >= tp_iou_thr: | ||
det_match += 1 | ||
if gt_label == det_label: | ||
true_positives[j] += 1 # TP | ||
confusion_matrix[gt_label, det_label] += 1 | ||
if det_match == 0: # BG FP | ||
confusion_matrix[-1, det_label] += 1 | ||
for num_tp, gt_label in zip(true_positives, gt_labels): | ||
if num_tp == 0: # FN | ||
confusion_matrix[gt_label, -1] += 1 | ||
|
||
|
||
def plot_confusion_matrix(confusion_matrix, | ||
labels, | ||
save_dir=None, | ||
show=True, | ||
title='Normalized Confusion Matrix', | ||
color_theme='plasma'): | ||
"""Draw confusion matrix with matplotlib. | ||
Args: | ||
confusion_matrix (ndarray): The confusion matrix. | ||
labels (list[str]): List of class names. | ||
save_dir (str|optional): If set, save the confusion matrix plot to the | ||
given path. Default: None. | ||
show (bool): Whether to show the plot. Default: True. | ||
title (str): Title of the plot. Default: `Normalized Confusion Matrix`. | ||
color_theme (str): Theme of the matrix color map. Default: `plasma`. | ||
""" | ||
# normalize the confusion matrix | ||
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] | ||
confusion_matrix = \ | ||
confusion_matrix.astype(np.float32) / per_label_sums * 100 | ||
|
||
num_classes = len(labels) | ||
fig, ax = plt.subplots( | ||
figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180) | ||
cmap = plt.get_cmap(color_theme) | ||
im = ax.imshow(confusion_matrix, cmap=cmap) | ||
plt.colorbar(mappable=im, ax=ax) | ||
|
||
title_font = {'weight': 'bold', 'size': 12} | ||
ax.set_title(title, fontdict=title_font) | ||
label_font = {'size': 10} | ||
plt.ylabel('Ground Truth Label', fontdict=label_font) | ||
plt.xlabel('Prediction Label', fontdict=label_font) | ||
|
||
# draw locator | ||
xmajor_locator = MultipleLocator(1) | ||
xminor_locator = MultipleLocator(0.5) | ||
ax.xaxis.set_major_locator(xmajor_locator) | ||
ax.xaxis.set_minor_locator(xminor_locator) | ||
ymajor_locator = MultipleLocator(1) | ||
yminor_locator = MultipleLocator(0.5) | ||
ax.yaxis.set_major_locator(ymajor_locator) | ||
ax.yaxis.set_minor_locator(yminor_locator) | ||
|
||
# draw grid | ||
ax.grid(True, which='minor', linestyle='-') | ||
|
||
# draw label | ||
ax.set_xticks(np.arange(num_classes)) | ||
ax.set_yticks(np.arange(num_classes)) | ||
ax.set_xticklabels(labels) | ||
ax.set_yticklabels(labels) | ||
|
||
ax.tick_params( | ||
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) | ||
plt.setp( | ||
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') | ||
|
||
# draw confution matrix value | ||
for i in range(num_classes): | ||
for j in range(num_classes): | ||
ax.text( | ||
j, | ||
i, | ||
'{}%'.format( | ||
int(confusion_matrix[ | ||
i, | ||
j]) if not np.isnan(confusion_matrix[i, j]) else -1), | ||
ha='center', | ||
va='center', | ||
color='w', | ||
size=7) | ||
|
||
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1 | ||
|
||
fig.tight_layout() | ||
if save_dir is not None: | ||
plt.savefig( | ||
os.path.join(save_dir, 'confusion_matrix.png'), format='png') | ||
if show: | ||
plt.show() | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
|
||
cfg = Config.fromfile(args.config) | ||
if args.cfg_options is not None: | ||
cfg.merge_from_dict(args.cfg_options) | ||
|
||
results = mmcv.load(args.prediction_path) | ||
assert isinstance(results, list) | ||
if isinstance(results[0], list): | ||
pass | ||
elif isinstance(results[0], tuple): | ||
results = [result[0] for result in results] | ||
else: | ||
raise TypeError('invalid type of prediction results') | ||
|
||
if isinstance(cfg.data.test, dict): | ||
cfg.data.test.test_mode = True | ||
elif isinstance(cfg.data.test, list): | ||
for ds_cfg in cfg.data.test: | ||
ds_cfg.test_mode = True | ||
dataset = build_dataset(cfg.data.test) | ||
|
||
confusion_matrix = calculate_confusion_matrix(dataset, results, | ||
args.score_thr, | ||
args.nms_iou_thr, | ||
args.tp_iou_thr) | ||
plot_confusion_matrix( | ||
confusion_matrix, | ||
dataset.CLASSES + ('background', ), | ||
save_dir=args.save_dir, | ||
show=args.show) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |