Skip to content

Commit

Permalink
Move eval_map to mmrotate.evaluation. (#73)
Browse files Browse the repository at this point in the history
* Move `eval_map` to mmrotate.evaluation.

* change name, fix description.

* remove recall
  • Loading branch information
liuyanyi authored Mar 9, 2022
1 parent 47b451d commit 8a05ea0
Show file tree
Hide file tree
Showing 4 changed files with 319 additions and 311 deletions.
1 change: 1 addition & 0 deletions mmrotate/core/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .anchor import * # noqa: F401, F403
from .bbox import * # noqa: F401, F403
from .evaluation import * # noqa: F401, F403
from .patch import * # noqa: F401, F403
from .post_processing import * # noqa: F401, F403
from .visualization import * # noqa: F401, F403
4 changes: 4 additions & 0 deletions mmrotate/core/evaluation/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .eval_map import eval_rbbox_map

__all__ = ['eval_rbbox_map']
311 changes: 311 additions & 0 deletions mmrotate/core/evaluation/eval_map.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,311 @@
# Copyright (c) OpenMMLab. All rights reserved.
from multiprocessing import get_context

import numpy as np
import torch
from mmcv.ops import box_iou_rotated
from mmcv.utils import print_log
from mmdet.core import average_precision
from terminaltables import AsciiTable


def tpfp_default(det_bboxes,
gt_bboxes,
gt_bboxes_ignore=None,
iou_thr=0.5,
area_ranges=None):
"""Check if detected bboxes are true positive or false positive.
Args:
det_bboxes (ndarray): Detected bboxes of this image, of shape (m, 6).
gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 5).
gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
of shape (k, 5). Default: None
iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. Default: None.
Returns:
tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
each array is (num_scales, m).
"""
# an indicator of ignored gts
det_bboxes = np.array(det_bboxes)
gt_ignore_inds = np.concatenate(
(np.zeros(gt_bboxes.shape[0], dtype=np.bool),
np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
# stack gt_bboxes and gt_bboxes_ignore for convenience
gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
if area_ranges is None:
area_ranges = [(None, None)]
num_scales = len(area_ranges)
# tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
# a certain scale
tp = np.zeros((num_scales, num_dets), dtype=np.float32)
fp = np.zeros((num_scales, num_dets), dtype=np.float32)

# if there is no gt bboxes in this image, then all det bboxes
# within area range are false positives
if gt_bboxes.shape[0] == 0:
if area_ranges == [(None, None)]:
fp[...] = 1
else:
raise NotImplementedError
return tp, fp

ious = box_iou_rotated(
torch.from_numpy(det_bboxes).float(),
torch.from_numpy(gt_bboxes).float()).numpy()
# for each det, the max iou with all gts
ious_max = ious.max(axis=1)
# for each det, which gt overlaps most with it
ious_argmax = ious.argmax(axis=1)
# sort all dets in descending order by scores
sort_inds = np.argsort(-det_bboxes[:, -1])
for k, (min_area, max_area) in enumerate(area_ranges):
gt_covered = np.zeros(num_gts, dtype=bool)
# if no area range is specified, gt_area_ignore is all False
if min_area is None:
gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
else:
raise NotImplementedError
for i in sort_inds:
if ious_max[i] >= iou_thr:
matched_gt = ious_argmax[i]
if not (gt_ignore_inds[matched_gt]
or gt_area_ignore[matched_gt]):
if not gt_covered[matched_gt]:
gt_covered[matched_gt] = True
tp[k, i] = 1
else:
fp[k, i] = 1
# otherwise ignore this detected bbox, tp = 0, fp = 0
elif min_area is None:
fp[k, i] = 1
else:
bbox = det_bboxes[i, :5]
area = bbox[2] * bbox[3]
if area >= min_area and area < max_area:
fp[k, i] = 1
return tp, fp


def get_cls_results(det_results, annotations, class_id):
"""Get det results and gt information of a certain class.
Args:
det_results (list[list]): Same as `eval_map()`.
annotations (list[dict]): Same as `eval_map()`.
class_id (int): ID of a specific class.
Returns:
tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes
"""
cls_dets = [img_res[class_id] for img_res in det_results]

cls_gts = []
cls_gts_ignore = []
for ann in annotations:
gt_inds = ann['labels'] == class_id
cls_gts.append(ann['bboxes'][gt_inds, :])

if ann.get('labels_ignore', None) is not None:
ignore_inds = ann['labels_ignore'] == class_id
cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :])

else:
cls_gts_ignore.append(torch.zeros((0, 6), dtype=torch.float64))

return cls_dets, cls_gts, cls_gts_ignore


def eval_rbbox_map(det_results,
annotations,
scale_ranges=None,
iou_thr=0.5,
use_07_metric=True,
dataset=None,
logger=None,
nproc=4):
"""Evaluate mAP of a rotated dataset.
Args:
det_results (list[list]): [[cls1_det, cls2_det, ...], ...].
The outer list indicates images, and the inner list indicates
per-class detected bboxes.
annotations (list[dict]): Ground truth annotations where each item of
the list indicates an image. Keys of annotations are:
- `bboxes`: numpy array of shape (n, 5)
- `labels`: numpy array of shape (n, )
- `bboxes_ignore` (optional): numpy array of shape (k, 5)
- `labels_ignore` (optional): numpy array of shape (k, )
scale_ranges (list[tuple] | None): Range of scales to be evaluated,
in the format [(min1, max1), (min2, max2), ...]. A range of
(32, 64) means the area range between (32**2, 64**2).
Default: None.
iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
use_07_metric (bool): Whether to use the voc07 metric.
dataset (list[str] | str | None): Dataset name or dataset classes,
there are minor differences in metrics for different datasets, e.g.
"voc07", "imagenet_det", etc. Default: None.
logger (logging.Logger | str | None): The way to print the mAP
summary. See `mmcv.utils.print_log()` for details. Default: None.
nproc (int): Processes used for computing TP and FP.
Default: 4.
Returns:
tuple: (mAP, [dict, dict, ...])
"""
assert len(det_results) == len(annotations)

num_imgs = len(det_results)
num_scales = len(scale_ranges) if scale_ranges is not None else 1
num_classes = len(det_results[0]) # positive class num
area_ranges = ([(rg[0]**2, rg[1]**2) for rg in scale_ranges]
if scale_ranges is not None else None)

pool = get_context('spawn').Pool(nproc)
eval_results = []
for i in range(num_classes):
# get gt and det bboxes of this class
cls_dets, cls_gts, cls_gts_ignore = get_cls_results(
det_results, annotations, i)

# compute tp and fp for each image with multiple processes
tpfp = pool.starmap(
tpfp_default,
zip(cls_dets, cls_gts, cls_gts_ignore,
[iou_thr for _ in range(num_imgs)],
[area_ranges for _ in range(num_imgs)]))
tp, fp = tuple(zip(*tpfp))
# calculate gt number of each scale
# ignored gts or gts beyond the specific scale are not counted
num_gts = np.zeros(num_scales, dtype=int)
for _, bbox in enumerate(cls_gts):
if area_ranges is None:
num_gts[0] += bbox.shape[0]
else:
gt_areas = bbox[:, 2] * bbox[:, 3]
for k, (min_area, max_area) in enumerate(area_ranges):
num_gts[k] += np.sum((gt_areas >= min_area)
& (gt_areas < max_area))
# sort all det bboxes by score, also sort tp and fp
cls_dets = np.vstack(cls_dets)
num_dets = cls_dets.shape[0]
sort_inds = np.argsort(-cls_dets[:, -1])
tp = np.hstack(tp)[:, sort_inds]
fp = np.hstack(fp)[:, sort_inds]
# calculate recall and precision with tp and fp
tp = np.cumsum(tp, axis=1)
fp = np.cumsum(fp, axis=1)
eps = np.finfo(np.float32).eps
recalls = tp / np.maximum(num_gts[:, np.newaxis], eps)
precisions = tp / np.maximum((tp + fp), eps)
# calculate AP
if scale_ranges is None:
recalls = recalls[0, :]
precisions = precisions[0, :]
num_gts = num_gts.item()
mode = 'area' if not use_07_metric else '11points'
ap = average_precision(recalls, precisions, mode)
eval_results.append({
'num_gts': num_gts,
'num_dets': num_dets,
'recall': recalls,
'precision': precisions,
'ap': ap
})
pool.close()
if scale_ranges is not None:
# shape (num_classes, num_scales)
all_ap = np.vstack([cls_result['ap'] for cls_result in eval_results])
all_num_gts = np.vstack(
[cls_result['num_gts'] for cls_result in eval_results])
mean_ap = []
for i in range(num_scales):
if np.any(all_num_gts[:, i] > 0):
mean_ap.append(all_ap[all_num_gts[:, i] > 0, i].mean())
else:
mean_ap.append(0.0)
else:
aps = []
for cls_result in eval_results:
if cls_result['num_gts'] > 0:
aps.append(cls_result['ap'])
mean_ap = np.array(aps).mean().item() if aps else 0.0

print_map_summary(
mean_ap, eval_results, dataset, area_ranges, logger=logger)

return mean_ap, eval_results


def print_map_summary(mean_ap,
results,
dataset=None,
scale_ranges=None,
logger=None):
"""Print mAP and results of each class.
A table will be printed to show the gts/dets/recall/AP of each class and
the mAP.
Args:
mean_ap (float): Calculated from `eval_map()`.
results (list[dict]): Calculated from `eval_map()`.
dataset (list[str] | str | None): Dataset name or dataset classes.
scale_ranges (list[tuple] | None): Range of scales to be evaluated.
logger (logging.Logger | str | None): The way to print the mAP
summary. See `mmcv.utils.print_log()` for details. Default: None.
"""

if logger == 'silent':
return

if isinstance(results[0]['ap'], np.ndarray):
num_scales = len(results[0]['ap'])
else:
num_scales = 1

if scale_ranges is not None:
assert len(scale_ranges) == num_scales

num_classes = len(results)

recalls = np.zeros((num_scales, num_classes), dtype=np.float32)
aps = np.zeros((num_scales, num_classes), dtype=np.float32)
num_gts = np.zeros((num_scales, num_classes), dtype=int)
for i, cls_result in enumerate(results):
if cls_result['recall'].size > 0:
recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1]
aps[:, i] = cls_result['ap']
num_gts[:, i] = cls_result['num_gts']

if dataset is None:
label_names = [str(i) for i in range(num_classes)]
else:
label_names = dataset

if not isinstance(mean_ap, list):
mean_ap = [mean_ap]

header = ['class', 'gts', 'dets', 'recall', 'ap']
for i in range(num_scales):
if scale_ranges is not None:
print_log(f'Scale range {scale_ranges[i]}', logger=logger)
table_data = [header]
for j in range(num_classes):
row_data = [
label_names[j], num_gts[i, j], results[j]['num_dets'],
f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}'
]
table_data.append(row_data)
table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}'])
table = AsciiTable(table_data)
table.inner_footing_row_border = True
print_log('\n' + table.table, logger=logger)
Loading

0 comments on commit 8a05ea0

Please sign in to comment.