Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Fix bugs in 3d human pose demo #2413

Merged
merged 2 commits into from
May 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion demo/body3d_pose_lifter_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,7 +386,7 @@ def main():
pose_results_2d = extract_pose_sequence(
pose_est_results_list,
frame_idx=frame_idx,
causal=pose_lifter.causal,
causal=pose_lift_dataset.get('causal', False),
seq_len=pose_lift_dataset.get('seq_len', 1),
step=pose_lift_dataset.get('seq_step', 1))

Expand Down
27 changes: 15 additions & 12 deletions mmpose/apis/inference_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ def inference_pose_lifter_model(model,
init_default_scope(model.cfg.get('default_scope', 'mmpose'))
pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline)

causal = model.causal
causal = model.cfg.test_dataloader.dataset.get('causal', False)
target_idx = -1 if causal else len(pose_results_2d) // 2

dataset_info = model.dataset_meta
Expand All @@ -193,18 +193,21 @@ def inference_pose_lifter_model(model,
bbox_scale = None

for i, pose_res in enumerate(pose_results_2d):
keypoints = []
for j, data_sample in enumerate(pose_res):
keypoint = np.squeeze(data_sample.pred_instances.keypoints, axis=0)
if norm_pose_2d:
bbox = np.squeeze(data_sample.pred_instances.bboxes)
center = np.array([[(bbox[0] + bbox[2]) / 2,
(bbox[1] + bbox[3]) / 2]])
scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
keypoints.append((keypoint[:, :2] - center) / scale *
bbox_scale + bbox_center)
else:
keypoints.append(keypoint[:, :2])
kpts = data_sample.pred_instances.keypoints
bboxes = data_sample.pred_instances.bboxes
keypoints = []
for k in range(len(kpts)):
kpt = kpts[k]
if norm_pose_2d:
bbox = bboxes[k]
center = np.array([[(bbox[0] + bbox[2]) / 2,
(bbox[1] + bbox[3]) / 2]])
scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
keypoints.append((kpt[:, :2] - center) / scale *
bbox_scale + bbox_center)
else:
keypoints.append(kpt[:, :2])
pose_results_2d[i][j].pred_instances.keypoints = np.array(
keypoints)

Expand Down
30 changes: 14 additions & 16 deletions mmpose/visualization/local_visualizer_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ def _draw_3d_data_samples(

plt.ioff()
fig = plt.figure(
figsize=(vis_width * 0.01, vis_height * num_instances * 0.01))
figsize=(vis_width * num_instances * 0.01, vis_height * 0.01))

def _draw_3d_instances_kpts(keypoints,
scores,
Expand All @@ -135,31 +135,30 @@ def _draw_3d_instances_kpts(keypoints,
for idx, (kpts, score, visible) in enumerate(
zip(keypoints, scores, keypoints_visible)):

valid = score >= kpt_thr
valid = np.logical_and(score >= kpt_thr,
np.any(~np.isnan(kpts), axis=-1))

ax = fig.add_subplot(
1, num_fig, fig_idx * (idx + 1), projection='3d')
ax.view_init(elev=axis_elev, azim=axis_azimuth)

x_c = np.mean(kpts[valid, 0]) if valid.any() else 0
y_c = np.mean(kpts[valid, 1]) if valid.any() else 0

ax.set_xlim3d([x_c - axis_limit / 2, x_c + axis_limit / 2])
ax.set_ylim3d([y_c - axis_limit / 2, y_c + axis_limit / 2])
ax.set_zlim3d([0, axis_limit])
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_aspect('auto')
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_zticklabels([])
ax.scatter([0], [0], [0], marker='o', color='red')
if title:
ax.set_title(f'{title} ({idx})')
ax.dist = axis_dist

ax.scatter([0], [0], [0], marker='o', color='red')
x_c = np.mean(kpts[valid, 0]) if valid.any() else 0
y_c = np.mean(kpts[valid, 1]) if valid.any() else 0

ax.set_xlim3d([x_c - axis_limit / 2, x_c + axis_limit / 2])
ax.set_ylim3d([y_c - axis_limit / 2, y_c + axis_limit / 2])

kpts = np.array(kpts, copy=False)

Expand Down Expand Up @@ -208,9 +207,6 @@ def _draw_3d_instances_kpts(keypoints,
ax.plot(
xs_3d, ys_3d, zs_3d, color=_color, zdir='z')

if title:
ax.set_title(f'{title} ({idx})')

if 'keypoints' in pred_instances:
keypoints = pred_instances.get('keypoints',
pred_instances.keypoints)
Expand Down Expand Up @@ -254,7 +250,9 @@ def _draw_3d_instances_kpts(keypoints,
if not pred_img_data.any():
pred_img_data = np.full((vis_height, vis_width, 3), 255)
else:
pred_img_data = pred_img_data.reshape(vis_height, vis_width, -1)
pred_img_data = pred_img_data.reshape(vis_height,
vis_width * num_instances,
-1)

plt.close(fig)

Expand Down