Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support Textual Inversion #1822

Merged
merged 9 commits into from
Jul 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 109 additions & 0 deletions configs/textual_inversion/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
# Textual Inversion (2022)

> [An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion](https://arxiv.org/abs/2208.01618)

> **Task**: Text2Image

<!-- [ALGORITHM] -->

## Abstract

<!-- [ABSTRACT] -->

Text-to-image models offer unprecedented freedom to guide creation through natural language. Yet, it is unclear how such freedom can be exercised to generate images of specific unique concepts, modify their appearance, or compose them in new roles and novel scenes. In other words, we ask: how can we use language-guided models to turn our cat into a painting, or imagine a new product based on our favorite toy? Here we present a simple approach that allows such creative freedom. Using only 3-5 images of a user-provided concept, like an object or a style, we learn to represent it through new "words" in the embedding space of a frozen text-to-image model. These "words" can be composed into natural language sentences, guiding personalized creation in an intuitive way. Notably, we find evidence that a single word embedding is sufficient for capturing unique and varied concepts. We compare our approach to a wide range of baselines, and demonstrate that it can more faithfully portray the concepts across a range of applications and tasks.

<!-- [IMAGE] -->

<div align=center>
<img src="https://github.com/open-mmlab/mmagic/assets/28132635/b2dac6f1-5151-4199-bcc2-71b5b1523a16">
</div>

## Configs

| Model | Dataset | Download |
| :-----------------------------------------: | :-----: | :------: |
| [Textual Inversion](./textual_inversion.py) | - | - |

## Quick Start

1. Download [data](https://drive.google.com/drive/folders/1fmJMs25nxS_rSNqS5hTcRdLem_YQXbq5) and save to `data/cat_toy`

The file structure will be like this:

```text
data
└── cat_toy
├── 1.jpeg
├── 2.jpeg
├── 3.jpeg
├── 3.jpeg
├── 4.jpeg
├── 6.jpeg
└── 7.jpeg
```

2. Start training with the following command:

```bash
bash tools/dist_train.sh configs/textual_inversion/textual_inversion.py 1
```

<div align="center">
<img src="https://github.com/open-mmlab/mmagic/assets/28132635/635a336c-fd6c-4c6f-b2c1-c1621420b9b9" width="400"/>
<br/>
</div>

3. Inference with trained textual embedding:

```python
import torch
from mmengine import Config

from mmagic.registry import MODELS
from mmagic.utils import register_all_modules

register_all_modules()


def process_state_dict(state_dict):
new_state_dict = dict()
for k, v in state_dict.items():
new_k = k.replace('module.', '')
new_state_dict[new_k] = v

return new_state_dict


cfg = Config.fromfile('configs/textual_inversion/textual_inversion.py')
checkpoint = torch.load('work_dirs/textual_inversion/iter_3000.pth')
state_dict = process_state_dict(checkpoint['state_dict'])
model = MODELS.build(cfg.model)
model.load_state_dict(state_dict)

model = model.cuda()
with torch.no_grad():
sample = model.infer('a <cat-toy> bag')['samples'][0]

sample.save('cat-toy-bag.png')
```

## Comments

Our codebase for the stable diffusion models builds heavily on [diffusers codebase](https://github.com/huggingface/diffusers) and the model weights are from [stable-diffusion-1.5](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py).

Thanks for the efforts of the community!

## Citation

```bibtex
@misc{gal2022textual,
doi = {10.48550/ARXIV.2208.01618},
url = {https://arxiv.org/abs/2208.01618},
author = {Gal, Rinon and Alaluf, Yuval and Atzmon, Yuval and Patashnik, Or and Bermano, Amit H. and Chechik, Gal and Cohen-Or, Daniel},
title = {An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion},
publisher = {arXiv},
year = {2022},
primaryClass={cs.CV}
}

```
18 changes: 18 additions & 0 deletions configs/textual_inversion/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
Collections:
- Name: Textual Inversion
Paper:
Title: 'An Image is Worth One Word: Personalizing Text-to-Image Generation using
Textual Inversion'
URL: https://arxiv.org/abs/2208.01618
README: configs/textual_inversion/README.md
Task:
- text2image
Year: 2022
Models:
- Config: configs/textual_inversion/textual_inversion.py
In Collection: Textual Inversion
Name: textual_inversion
Results:
- Dataset: '-'
Metrics: {}
Task: Text2Image
85 changes: 85 additions & 0 deletions configs/textual_inversion/textual_inversion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
_base_ = '../_base_/gen_default_runtime.py'

# config for model
dtype = 'fp16'
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'

placeholder_token = '<cat-toy>'
initialize_token = 'toy'
num_vectors_per_token = 1
val_prompts = [
'a <cat-toy> on packbag', 'a <cat-toy> on sofa',
'a <cat-toy> in swimming pool', 'a <cat-toy>'
]

model = dict(
type='TextualInversion',
placeholder_token=placeholder_token,
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
from_pretrained=stable_diffusion_v15_url,
subfolder='unet'),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
initialize_token=initialize_token,
num_vectors_per_token=num_vectors_per_token,
val_prompts=val_prompts,
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='DataPreprocessor', data_keys=None))

train_cfg = dict(max_iters=3000)

optim_wrapper = dict(
modules='.*trainable_embeddings',
optimizer=dict(type='AdamW', lr=5e-4),
accumulative_counts=1)

pipeline = [
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='Resize', scale=(512, 512)),
dict(type='PackInputs')
]

dataset = dict(
type='TextualInversionDataset',
data_root='./data/',
concept_dir='cat_toy',
placeholder=placeholder_token,
pipeline=pipeline)

train_dataloader = dict(
dataset=dataset,
num_workers=16,
sampler=dict(type='InfiniteSampler', shuffle=True),
persistent_workers=True,
batch_size=1)
val_cfg = val_evaluator = val_dataloader = None
test_cfg = test_evaluator = test_dataloader = None

default_hooks = dict(
logger=dict(interval=10),
checkpoint=dict(type='CheckpointHook', interval=10))
custom_hooks = [
dict(
type='VisualizationHook',
interval=50,
fixed_input=True,
# visualize train dataset
vis_kwargs_list=dict(type='Data', name='fake_img'),
n_samples=1)
]
3 changes: 2 additions & 1 deletion mmagic/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,12 +11,13 @@
from .mscoco_dataset import MSCoCoDataset
from .paired_image_dataset import PairedImageDataset
from .singan_dataset import SinGANDataset
from .textual_inversion_dataset import TextualInversionDataset
from .unpaired_image_dataset import UnpairedImageDataset

__all__ = [
'AdobeComp1kDataset', 'BasicImageDataset', 'BasicFramesDataset',
'BasicConditionalDataset', 'UnpairedImageDataset', 'PairedImageDataset',
'ImageNet', 'CIFAR10', 'GrowScaleImgDataset', 'SinGANDataset',
'MSCoCoDataset', 'ControlNetDataset', 'DreamBoothDataset',
'ControlNetDataset', 'SDFinetuneDataset'
'ControlNetDataset', 'SDFinetuneDataset', 'TextualInversionDataset'
]
122 changes: 122 additions & 0 deletions mmagic/datasets/textual_inversion_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from random import choice
from typing import Callable, List, Union

from mmengine import FileClient
from mmengine.dataset import BaseDataset

from mmagic.registry import DATASETS

imagenet_templates_small = [
'a photo of a {}',
'a rendering of a {}',
'a cropped photo of the {}',
'the photo of a {}',
'a photo of a clean {}',
'a photo of a dirty {}',
'a dark photo of the {}',
'a photo of my {}',
'a photo of the cool {}',
'a close-up photo of a {}',
'a bright photo of the {}',
'a cropped photo of a {}',
'a photo of the {}',
'a good photo of the {}',
'a photo of one {}',
'a close-up photo of the {}',
'a rendition of the {}',
'a photo of the clean {}',
'a rendition of a {}',
'a photo of a nice {}',
'a good photo of a {}',
'a photo of the nice {}',
'a photo of the small {}',
'a photo of the weird {}',
'a photo of the large {}',
'a photo of a cool {}',
'a photo of a small {}',
]

imagenet_style_templates_small = [
'a painting in the style of {}',
'a rendering in the style of {}',
'a cropped painting in the style of {}',
'the painting in the style of {}',
'a clean painting in the style of {}',
'a dirty painting in the style of {}',
'a dark painting in the style of {}',
'a picture in the style of {}',
'a cool painting in the style of {}',
'a close-up painting in the style of {}',
'a bright painting in the style of {}',
'a cropped painting in the style of {}',
'a good painting in the style of {}',
'a close-up painting in the style of {}',
'a rendition in the style of {}',
'a nice painting in the style of {}',
'a small painting in the style of {}',
'a weird painting in the style of {}',
'a large painting in the style of {}',
]


@DATASETS.register_module()
class TextualInversionDataset(BaseDataset):
"""Dataset for DreamBooth.

Args:
data_root (str): Path to the data root.
concept_dir (str): Path to the concept images.
is_style (bool)
prompt (str): Prompt of the concept.
pipeline (list[dict | callable]): A sequence of data transforms.
"""

def __init__(self,
data_root: str,
concept_dir: str,
placeholder: str,
is_style: bool = False,
pipeline: List[Union[dict, Callable]] = []):

data_prefix = dict(img_path=concept_dir)

self.placeholder = placeholder
if is_style:
self.template = imagenet_style_templates_small
else:
self.template = imagenet_templates_small

super().__init__(
data_root=data_root, data_prefix=data_prefix, pipeline=pipeline)

def load_data_list(self) -> list:
"""Load data list from concept_dir and class_dir."""
data_list = []

img_dir = self.data_prefix['img_path']
file_client = FileClient.infer_client(uri=img_dir)
img_dir = osp.abspath(img_dir)

for data_name in file_client.list_dir_or_file(img_dir, list_dir=False):
data_info = dict(
img_path=file_client.join_path(img_dir, data_name))
data_list.append(data_info)
return data_list

def prepare_data(self, idx):
"""Get data processed by ``self.pipeline``.

Args:
idx (int): The index of ``data_info``.

Returns:
Any: Depends on ``self.pipeline``.
"""
data_info = self.get_data_info(idx)
# load random template
selected_template = choice(self.template)
prompt = selected_template.format(self.placeholder)
data_info['prompt'] = prompt
return self.pipeline(data_info)
3 changes: 2 additions & 1 deletion mmagic/models/editors/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@
from .stylegan3 import StyleGAN3, StyleGAN3Generator
from .swinir import SwinIRNet
from .tdan import TDAN, TDANNet
from .textual_inversion import TextualInversion
from .tof import TOFlowVFINet, TOFlowVSRNet, ToFResBlock
from .ttsr import LTE, TTSR, SearchTransformer, TTSRDiscriminator, TTSRNet
from .wgan_gp import WGANGP
Expand Down Expand Up @@ -88,5 +89,5 @@
'StyleGAN3Generator', 'InstColorization', 'NAFBaseline',
'NAFBaselineLocal', 'NAFNet', 'NAFNetLocal', 'DenoisingUnet',
'ClipWrapper', 'EG3D', 'Restormer', 'SwinIRNet', 'StableDiffusion',
'ControlStableDiffusion', 'DreamBooth'
'ControlStableDiffusion', 'DreamBooth', 'TextualInversion'
]
6 changes: 4 additions & 2 deletions mmagic/models/editors/dreambooth/dreambooth.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,6 @@ class DreamBooth(StableDiffusion):
encoder.
tokenizer (str): The **name** for CLIP tokenizer.
unet (Union[dict, nn.Module]): The config or module for Unet model.
controlnet (Union[dict, nn.Module]): The config or module for
ControlNet.
schedule (Union[dict, nn.Module]): The config or module for diffusion
scheduler.
test_scheduler (Union[dict, nn.Module], optional): The config or
Expand All @@ -54,6 +52,10 @@ class DreamBooth(StableDiffusion):
noise_offset_weight (bool, optional): The weight of noise offset
introduced in https://www.crosslabs.org/blog/diffusion-with-offset-noise # noqa
Defaults to 0.
tomesd_cfg (dict, optional): The config for TOMESD. Please refers to
https://github.com/dbolya/tomesd and
https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/utils/tome_utils.py for detail. # noqa
Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`. Defaults to
dict(type='DataPreprocessor').
Expand Down
4 changes: 4 additions & 0 deletions mmagic/models/editors/textual_inversion/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .textual_inversion import TextualInversion

__all__ = ['TextualInversion']
Loading