Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Community] Support Glide Upsampler #1663

Merged
merged 20 commits into from
Jun 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 32 additions & 3 deletions projects/glide/configs/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,10 @@ Diffusion models have recently been shown to generate high-quality synthetic ima

**Laion**

| Method | Resolution | Config | Weights |
| ------ | ---------- | -------------------------------------------------------------------------- | ----------------------------------------------------------------------------------- |
| Glide | 64x64 | [config](projects/glide/configs/glide_ddim-classifier-free_laion-64x64.py) | [model](https://download.openmmlab.com/mmagic/glide/glide_laion-64x64-02afff47.pth) |
| Method | Resolution | Config | Weights |
| ------ | ---------------- | --------------------------------------------------------------------------- | --------------------------------------------------------------------------------------- |
| Glide | 64x64 | [config](projects/glide/configs/glide_ddim-classifier-free_laion-64x64.py) | [model](https://download.openmmlab.com/mmediting/glide/glide_laion-64x64-02afff47.pth) |
| Glide | 64x64 -> 256x256 | [config](projects/glide/configs/glide_ddim-classifier-free_laion-64-256.py) | [model](https://download.openmmlab.com/mmediting/glide/glide_laion-64-256-02afff47.pth) |

## Quick Start

Expand Down Expand Up @@ -66,6 +67,34 @@ with torch.no_grad():
show_progress=True)['samples']
```

You can synthesis images with 256x256 resolution:

```python
import torch
from torchvision.utils import save_image
from mmedit.apis import init_model
from mmengine.registry import init_default_scope
from projects.glide.models import *

init_default_scope('mmedit')

config = 'projects/glide/configs/glide_ddim-classifier-free_laion-64-256.py'
ckpt = 'https://download.openmmlab.com/mmediting/glide/glide_laion-64-256-02afff47.pth'
model = init_model(config, ckpt).cuda().eval()
prompt = "an oil painting of a corgi"

with torch.no_grad():
samples = model.infer(init_image=None,
prompt=prompt,
batch_size=16,
guidance_scale=3.,
num_inference_steps=100,
labels=None,
classifier_scale=0.0,
show_progress=True)['samples']
save_image(samples, "corgi.png", nrow=4, normalize=True, value_range=(-1, 1))
```

## Citation

```bibtex
Expand Down
68 changes: 68 additions & 0 deletions projects/glide/configs/glide_ddim-classifier-free_laion-64-256.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
unet_cfg = dict(
type='Text2ImUNet',
image_size=64,
base_channels=192,
in_channels=3,
resblocks_per_downsample=3,
attention_res=(32, 16, 8),
norm_cfg=dict(type='GN32', num_groups=32),
dropout=0.1,
num_classes=0,
use_fp16=False,
resblock_updown=True,
attention_cfg=dict(
type='MultiHeadAttentionBlock',
num_heads=1,
num_head_channels=64,
use_new_attention_order=False,
encoder_channels=512),
use_scale_shift_norm=True,
text_ctx=128,
xf_width=512,
xf_layers=16,
xf_heads=8,
xf_final_ln=True,
xf_padding=True,
)
unet_up_cfg = dict(
type='SuperResText2ImUNet',
image_size=256,
base_channels=192,
in_channels=3,
output_cfg=dict(var='FIXED'),
resblocks_per_downsample=2,
attention_res=(32, 16, 8),
norm_cfg=dict(type='GN32', num_groups=32),
dropout=0.1,
num_classes=0,
use_fp16=False,
resblock_updown=True,
attention_cfg=dict(
type='MultiHeadAttentionBlock',
num_heads=1,
num_head_channels=64,
use_new_attention_order=False,
encoder_channels=512),
use_scale_shift_norm=True,
text_ctx=128,
xf_width=512,
xf_layers=16,
xf_heads=8,
xf_final_ln=True,
xf_padding=True,
)

model = dict(
type='Glide',
data_preprocessor=dict(type='DataPreprocessor', mean=[127.5], std=[127.5]),
unet=unet_cfg,
diffusion_scheduler=dict(
type='EditDDIMScheduler',
variance_type='learned_range',
beta_schedule='squaredcos_cap_v2'),
unet_up=unet_up_cfg,
diffusion_scheduler_up=dict(
type='EditDDIMScheduler',
variance_type='learned_range',
beta_schedule='linear'),
use_fp16=False)
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
xf_padding=True,
),
diffusion_scheduler=dict(
type='DDIMScheduler',
type='EditDDIMScheduler',
variance_type='learned_range',
beta_schedule='squaredcos_cap_v2'),
use_fp16=False)
4 changes: 2 additions & 2 deletions projects/glide/models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from .glide import Glide
from .text2im_unet import Text2ImUNet
from .text2im_unet import SuperResText2ImUNet, Text2ImUNet

__all__ = ['Text2ImUNet', 'Glide']
__all__ = ['Text2ImUNet', 'Glide', 'SuperResText2ImUNet']
190 changes: 149 additions & 41 deletions projects/glide/models/glide.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,10 @@
from mmengine.runner.checkpoint import _load_checkpoint_with_prefix
from tqdm import tqdm

from mmagic.registry import DIFFUSION_SCHEDULERS, MODELS, MODULES
from mmagic.registry import DIFFUSION_SCHEDULERS, MODELS
from mmagic.structures import DataSample
from mmagic.utils.typing import ForwardInputs, SampleList

# from .guider import ImageTextGuider

ModelType = Union[Dict, nn.Module]


Expand All @@ -32,38 +30,70 @@ def classifier_grad(classifier, x, t, y=None, classifier_scale=1.0):
return torch.autograd.grad(selected.sum(), x_in)[0] * classifier_scale


@MODELS.register_module('GLIDE')
@MODELS.register_module()
class Glide(BaseModel):
"""Guided diffusion Model.
"""GLIDE: Guided language to image diffusion for generation and editing.
Refer to: https://github.com/openai/glide-text2im.


Args:
data_preprocessor (dict, optional): The pre-process config of
data_preprocessor (dict, optional): The pre-process configuration for
:class:`BaseDataPreprocessor`.
unet (ModelType): Config of denoising Unet.
diffusion_scheduler (ModelType): Config of diffusion_scheduler
unet (ModelType): Configuration for the denoising Unet.
diffusion_scheduler (ModelType): Configuration for the diffusion
scheduler.
use_fp16 (bool): Whether to use fp16 for unet model. Defaults to False.
classifier (ModelType): Config of classifier. Defaults to None.
pretrained_cfgs (dict): Path Config for pretrained weights. Usually
this is a dict contains module name and the corresponding ckpt
path.Defaults to None.
unet_up (ModelType, optional): Configuration for the upsampling
denoising UNet. Defaults to None.
diffusion_scheduler_up (ModelType, optional): Configuration for
the upsampling diffusion scheduler. Defaults to None.
use_fp16 (bool, optional): Whether to use fp16 for the unet model.
Defaults to False.
classifier (ModelType, optional): Configuration for the classifier.
Defaults to None.
classifier_scale (float): Classifier scale for classifier guidance.
Defaults to 1.0.
data_preprocessor (Optional[ModelType]): Configuration for the data
preprocessor.
pretrained_cfgs (dict, optional): Path configuration for pretrained
weights. Usually, this is a dict containing the module name and
the corresponding ckpt path. Defaults to None.
"""

def __init__(self,
data_preprocessor,
unet,
diffusion_scheduler,
use_fp16=False,
classifier=None,
classifier_scale=1.0,
pretrained_cfgs=None):
unet: ModelType,
diffusion_scheduler: ModelType,
unet_up: Optional[ModelType] = None,
diffusion_scheduler_up: Optional[ModelType] = None,
use_fp16: Optional[bool] = False,
classifier: Optional[dict] = None,
classifier_scale: float = 1.0,
data_preprocessor: Optional[ModelType] = dict(
type='DataPreprocessor'),
pretrained_cfgs: Optional[dict] = None):

super().__init__(data_preprocessor=data_preprocessor)
self.unet = MODULES.build(unet)
self.unet = unet if isinstance(unet, nn.Module) else MODELS.build(unet)
self.diffusion_scheduler = DIFFUSION_SCHEDULERS.build(
diffusion_scheduler)
diffusion_scheduler) if isinstance(diffusion_scheduler,
dict) else diffusion_scheduler

self.unet_up = None
self.diffusion_scheduler_up = None
if unet_up:
self.unet_up = unet_up if isinstance(
unet_up, nn.Module) else MODELS.build(unet_up)
if diffusion_scheduler_up:
self.diffusion_scheduler_up = DIFFUSION_SCHEDULERS.build(
diffusion_scheduler_up) if isinstance(
diffusion_scheduler_up,
dict) else diffusion_scheduler_up
else:
self.diffusion_scheduler_up = deepcopy(
self.diffusion_scheduler)

if classifier:
self.classifier = MODULES.build(classifier)
self.classifier = MODELS.build(classifier)
else:
self.classifier = None
self.classifier_scale = classifier_scale
Expand Down Expand Up @@ -101,26 +131,34 @@ def device(self):

@torch.no_grad()
def infer(self,
init_image=None,
prompt=None,
batch_size=1,
guidance_scale=3.,
num_inference_steps=50,
labels=None,
classifier_scale=0.0,
show_progress=False):
"""_summary_
init_image: Optional[torch.Tensor] = None,
prompt: str = None,
batch_size: Optional[int] = 1,
guidance_scale: float = 3.,
num_inference_steps: int = 50,
num_inference_steps_up: Optional[int] = 27,
labels: Optional[torch.Tensor] = None,
classifier_scale: float = 0.0,
show_progress: Optional[bool] = False):
"""Inference function for guided diffusion.

Args:
init_image (_type_, optional): _description_. Defaults to None.
batch_size (int, optional): _description_. Defaults to 1.
num_inference_steps (int, optional): _description_.
Defaults to 1000.
labels (_type_, optional): _description_. Defaults to None.
show_progress (bool, optional): _description_. Defaults to False.
init_image (torch.Tensor, optional): Starting noise for diffusion.
Defaults to None.
prompt (str): The prompt to guide the image generation.
batch_size (int, optional): Batch size for generation.
Defaults to 1.
num_inference_steps (int, optional): The number of denoising steps.
Defaults to 50.
num_inference_steps_up (int, optional): The number of upsampling
denoising steps. Defaults to 27.
labels (torch.Tensor, optional): Labels for the classifier.
Defaults to None.
show_progress (bool, optional): Whether to show the progress bar.
Defaults to False.

Returns:
_type_: _description_
torch.Tensor: Generated images.
"""
# Sample gaussian noise to begin loop
if init_image is None:
Expand Down Expand Up @@ -167,9 +205,6 @@ def infer(self,
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
noise_pred = torch.cat([eps, rest], dim=1)
# noise_pred_text, noise_pred_uncond = model_output.chunk(2)
# noise_pred = noise_pred_uncond + guidance_scale *
# (noise_pred_text - noise_pred_uncond)

# 2. compute previous image: x_t -> x_t-1
diffusion_scheduler_output = self.diffusion_scheduler.step(
Expand All @@ -191,8 +226,79 @@ def infer(self,
else:
image = diffusion_scheduler_output['prev_sample']

# abandon unconditional image
image = image[:image.shape[0] // 2]

if self.unet_up:
image = self.infer_up(
low_res_img=image,
batch_size=batch_size,
prompt=prompt,
num_inference_steps=num_inference_steps_up)

return {'samples': image}

@torch.no_grad()
def infer_up(self,
low_res_img: torch.Tensor,
batch_size: int = 1,
init_image: Optional[torch.Tensor] = None,
prompt: Optional[str] = None,
num_inference_steps: int = 27,
show_progress: bool = False):
"""Inference function for upsampling guided diffusion.

Args:
low_res_img (torch.Tensor): Low resolution image
(shape: [B, C, H, W]) for upsampling.
batch_size (int, optional): Batch size for generation.
Defaults to 1.
init_image (torch.Tensor, optional): Starting noise
(shape: [B, C, H, W]) for diffusion. Defaults to None.
prompt (str, optional): The text prompt to guide the image
generation. Defaults to None.
num_inference_steps (int, optional): The number of denoising
steps. Defaults to 27.
show_progress (bool, optional): Whether to show the progress bar.
Defaults to False.

Returns:
torch.Tensor: Generated upsampled images (shape: [B, C, H, W]).
"""
if init_image is None:
image = torch.randn(
(batch_size, self.unet_up.in_channels // 2,
self.unet_up.image_size, self.unet_up.image_size))
image = image.to(self.device)
else:
image = init_image

# set step values
if num_inference_steps > 0:
self.diffusion_scheduler_up.set_timesteps(num_inference_steps)
timesteps = self.diffusion_scheduler_up.timesteps

# text embedding
tokens = self.unet.tokenizer.encode(prompt)
tokens, mask = self.unet.tokenizer.padded_tokens_and_mask(tokens, 128)
tokens = torch.tensor(
[tokens] * batch_size, dtype=torch.bool, device=self.device)
mask = torch.tensor(
[mask] * batch_size, dtype=torch.bool, device=self.device)

if show_progress and mmengine.dist.is_main_process():
timesteps = tqdm(timesteps)

for t in timesteps:
noise_pred = self.unet_up(
image, t, low_res=low_res_img, tokens=tokens, mask=mask)
# compute previous image: x_t -> x_t-1
diffusion_scheduler_output = self.diffusion_scheduler_up.step(
noise_pred, t, image)
image = diffusion_scheduler_output['prev_sample']

return image

def forward(self,
inputs: ForwardInputs,
data_samples: Optional[list] = None,
Expand Down Expand Up @@ -253,6 +359,7 @@ def forward(self,
batch_sample_list.append(gen_sample)
return batch_sample_list

@torch.no_grad()
def val_step(self, data: dict) -> SampleList:
"""Gets the generated image of given data.

Expand All @@ -271,6 +378,7 @@ def val_step(self, data: dict) -> SampleList:
outputs = self(**data)
return outputs

@torch.no_grad()
def test_step(self, data: dict) -> SampleList:
"""Gets the generated image of given data. Same as :meth:`val_step`.

Expand Down
Loading